giải pt x^3+(x+1)^3+(x+2)^3=(x+3)^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
\(x^3-x^2-x=\dfrac{1}{3}\)
\(\Leftrightarrow3\left(x^3-x^2-x\right)=1\)
\(\Leftrightarrow3x^3-3x^2-3x=1\)
\(\Leftrightarrow4x^3-x^3-3x^2-3x=1\)
\(\Leftrightarrow4x^3=x^3+3x^2+3x+1\)
\(\Leftrightarrow4x^3=\left(x+1\right)^3\)
\(\Leftrightarrow x=\dfrac{x+1}{\sqrt[3]{4}}\)
\(\Leftrightarrow x=\dfrac{1}{\sqrt[3]{4}-1}\)
`x(x+3) - (2x-1) . (x+3) = 0`
`<=>(x+3)(x-2x+1)=0`
`<=>(x+3)(-x+1)=0`
`** x+3=0`
`<=>x=-3`
`** -x+1=0`
`<=>x=1`
`x(x-3) - 5 (x-3) = 0`
`<=>(x-3)(x-5)=0`
`** x-3=0`
`<=>x=3`
`** x-5=0`
`<=>x=5`
`3x + 12 = 0`
`<=>3x=-12`
`<=> x=-4`
`2x (x-2) + 5 (x-2) = 0`
`<=>(x-2)(2x+5)=0`
`** x-2=0`
`<=>x=2`
`** 2x+5=0`
`<=> x= -5/2`
\(2+\dfrac{3\left(x+1\right)}{3}\le3-\dfrac{x-1}{4}\)
\(\Leftrightarrow2+x+1\le\dfrac{12}{4}-\dfrac{x-1}{4}\)
\(\Leftrightarrow x+3\le\dfrac{13-x}{4}\)
\(\Leftrightarrow\dfrac{4x+12}{4}\le\dfrac{13-x}{4}\)
\(\Leftrightarrow4x+12\le13-x\)
\(\Leftrightarrow4x+x\le13-12\)
\(\Leftrightarrow5x\le1\)
\(\Leftrightarrow x\le\dfrac{1}{5}\)
Vậy: \(x\le\dfrac{1}{5}\)
\(2+\dfrac{3\left(x+1\right)}{3}\le3-\dfrac{x-1}{4}\)
\(\Leftrightarrow\dfrac{12x+36}{12}\le\dfrac{33-3x}{12}\)
\(\Leftrightarrow12x+36\le33-3x\)
\(\Leftrightarrow12x+3x\le-36+33\)
\(\Leftrightarrow15x\le-3\)
\(\Leftrightarrow x\le\dfrac{-1}{5}\)