Cho tam giác ABC, góc B > 90*. Gọi D là điểm trên tia đối của tia CB. Chứng minh rằng AB < AC < AD.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
MS
1
4 tháng 3 2018
Có góc ACD là góc ngoài của tam giác ABC nên góc ACD>góc B hay AD>AC( quan hệ giữa góc và cạnh đối diện trong tam giác(1)
Có tam giác ABC là tam giác vuông nên góc B >góc ACB hay AC>AB(2)
Từ (1) & (2) suy ra AD>AC>AB đpcm
Chúc bạn học tốt nhé
MS
0
27 tháng 8 2022
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Vì góc B > 90 độ => góc B lớn nhất (góc A và góc C đều bé hơn góc B)
Vì góc B lớn hơn góc C => AC>AB (đối diện vs góc lớn hơn là cạnh lớn hơn)
Vì góc B là góc tù (>90độ) => góc C và góc A là góc nhọn
=> góc ACD=180 độ - góc C
=> góc ACD là góc tù => góc ACD là góc lớn nhất trong tg ACD
=> góc ADC < góc ACD => AD>AC (đối diện vs góc lớn hơn là cạnh lớn hơn)
=> AB<AC<AD chúc bạn học tốt nhé!