Cho tam giác ABC nhọn ( AB<AC) đường trung tuyến am. Trên tia đối của MA lấy điểm D sao cho MD=MA
a) CM tam giác AMB và tam giác DMC và AB // CD
b) Gọi F là trung điểm của CD . Tia FM cắt AD tại K . CM M là trung điểm của KF
c) gọi C là trung điểm của AC. BE cắt Am tại G,I là trung điểm của AF. CM: K,G,I Thẳng hàng
Mình làm câu đầu tiên nhé :)
a) Xét tam giác ABM và tam giác DMC có :
BM = CM ( gt )
\(\widehat{AMB}=\widehat{DMC}\)
AM = DM ( gt )
\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )
Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD