Bài 5:
a) Với 4 tia phân biệt chung gốc có thể tạo thành bao nhiêu góc ?
b) Với n tia phân biệt chung gốc có thể tạo thành bao nhiêu góc ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Lời giải của tớ đây nha, cậu tham khảo nhé :3
Chọn 1 tia ghép với n-1 tia còn lại tạo thành n-1 góc
Làm tương tự với tất cả n tia tạo thành : n.(n-1) góc
Như vậy mỗi góc đã được tính 2 lần
Vậy số góc thực có là : n(n-1):2 góc
Theo bài ra ta có : n(n-1):2 = 276
=> n(n-1) = 276.2
=> n(n-1) = 552
Mà 552 = 24.23
=> n = 24
Vậy n=4
2.
Chọn 1 tia nối với 49 tia còn lại tạo thành 49 góc
Làm tương tự với tất cả 50 tia tạo thành 50.49 = 2450 góc
Như vậy mỗi góc đã được tính hai lần
Vậy số góc thực có là : 2450 :2 = 1225 góc
Làm bài zui zẻ nhoa :3
ta có :
tổng số góc được tạo thành là: n.(n+1):2=276
=> n(n+1)=276,2=550
n(n+1)=23(23+1)=23.24
=>n=23
tương tự như trên
tổng số góc được tạo thành là: 50(50-1):2=1225(góc)
chúc bn học tốt nha ^-^
1: Số góc tạo thành là 5*4/2=10(góc)
2: số góc tạo thành là 3*2/2=3 góc
công thức này vẫn được tính góc: \(\frac{n\left(n-1\right)}{2}\)
a) Áp dụng công thức trên ta có: \(\frac{4\left(4-1\right)}{2}=\frac{4.3}{2}=6\)(góc)
b) Áp dụng công thức trên ta có: \(\frac{n\left(n-1\right)}{2}\)góc