|-3.x-1|=2 vs x thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(36x^2-49=0\)
\(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)
\(TH_1:6x-7=0\) \(TH_2:6x+7=0\)
\(\Leftrightarrow6x=7\) \(\Leftrightarrow6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\) \(\Leftrightarrow x=-\dfrac{7}{6}\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{7}{6};-\dfrac{7}{6}\right\}\)
Bài 2
a) 36x2-49=0
⇔ (6x)2-49=0
⇔(6x-7).(6x+7)=0
TH1: 6x-7=0 TH2: 6x+7=0
⇔6x=7 ⇔6x=-7
⇔x=7/6 ⇔x=-7/6
1. Chia (x^3-2) cho x-1 ta được x^2+x+1 dư -1
Vậy để x^3-2 chia hết cho x-1 thì x-1\(\in\)Ư(-1)
Mà Ư(-1)={1;-1}
=> x-1\(\in\){1;-1}
*) x-1 = 1<=> x=2
*) x-1 =-1 <=> x=0
Vậy x=2;x=0 thì x^3-2 chia hết cho x-1
2, Chia cột dọc x^3-a cho x-1 ta được x^2+x+1 dư 1-a
Vậy để x^3-a chia hết cho x-1 thì 1-a=0 <=> a = 1
Vậy a=1 thì x^3 - a chia hết cho x-1
Áp dụng Bđt Cauchy-schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=3^2=9\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
\(\Rightarrow P\ge3\)
Dấu = khi x=y=z=1
Ta có:|-3.x-1|=2
=>-3.x-1=2 hoặc -3.x-1=-2
Với -3.x-1=2 =>-3.x=3 => x=-1
Với -3.x-1=-2 =>-3.x=-1 => x=\(\frac{1}{3}\)
Nguyễn Phương Trang và các bn tk mik nha
ban oi ban bt lam phan so the nao ko