K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016

mình mới học lớp 6 thôi

Giả sử tồn tại các số nguyên a,b,c thỏa mãn đề bài

Ta có:\(\hept{\begin{cases}f\left(1998\right)=1998^2a+1998b+c=1\\f\left(2000\right)=2000^2a+2000b+c=2\end{cases}}\)

\(\Rightarrow f\left(2000\right)-f\left(1998\right)=\left(2000^2a+2000b+c\right)-\left(1998^2a+1998b+c\right)=2-1\)

\(\Leftrightarrow\left(2000^2-1998^2\right)a+2b=1\)

Ta thấy 1 là số lẻ mà 2b và (2000^2-1998^2)a là số chẵn nên 2b+(2000^2-1998^2)a là số chắn(Vô lý)

Vậy ko tồn tại các số nguyên a,b,c thỏa mãn đề bài(đpcm)

5 tháng 8 2020

Cảm ơn bạn Tuấn Anh

NV
21 tháng 3 2022

3 là mệnh đề đúng, do khi \(\Delta< 0\) thì \(a.f\left(x\right)>0\) ; \(\forall a\ne0\)