K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2021

\(BC=BH+HC=75+96=171\)

Áp dụng định lý Pytago trong tam giác vuông ABC : 

\(AC=\sqrt{BC^2-AB^2}=\sqrt{171^2-85^2}=16\sqrt{86}\)

Áp dụng HTL trong tam giác vuông ABC : 

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{85\cdot16\sqrt{86}}{171}=\dfrac{1360\sqrt{86}}{171}\)

 

4 tháng 6 2021

Em xem lại đề nhé , còn cách làm a đúng rồi ấy.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

DO đó:ΔABC\(\sim\)ΔHBA

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

c: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó:ADHE là hình chữ nhật

Suy ra: AH=DE

mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)

nên DE=8cm

27 tháng 10 2021

a: AB=15(cm)

AC=20(cm)

BH=9(cm)
CH=16(cm)

4 tháng 4 2019

a, Tìm được BH=9cm, CH=16cm, AB=15cm, và AC=20cm

b, Tìm được  A M H ^ ≈ 73 , 74 0

c,  S A H M = 21 c m 2

Bài 1: Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm ; BC = 25 cm.a)     Tìm độ dài của BH; CH; AB và AC.b) Vẽ trung tuyến AM. Tính AMc)     Tìm diện tích của rAHM.Bài 2: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 12 cm; EF = 20. Tính DF; EH; FH.Bài 3: Cho tam giác DEF vuông tại D, đường cao DH. Biết EH = 1 cm; FH = 4 cm. Tính EF; DE; DF.Bài 4: BP 2017-2018Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH =...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm ; BC = 25 cm.

a)     Tìm độ dài của BH; CH; AB và AC.

b) Vẽ trung tuyến AM. Tính AM

c)     Tìm diện tích của rAHM.

Bài 2: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 12 cm; EF = 20. Tính DF; EH; FH.

Bài 3: Cho tam giác DEF vuông tại D, đường cao DH. Biết EH = 1 cm; FH = 4 cm. Tính EF; DE; DF.

Bài 4: BP 2017-2018

Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH = 9cm.

a)       Tính độ dài đường cao AH và ABC của tam giác ABC.

b)       Vẽ đường trung tuyến AM, (M e BC) của tam giác ABC. Tính AM và diện tích của tam giác

Bài 5.   Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 3 và 4 . Hãy tính các cạnh góc vuông của tam giác vuông này, đường trung tuyến ứng với cạnh huyền và diện tích tam giác ABC

Bài 6. (1.0 điểm)

      Cho tam giác ABC vuông tại A, có AB = 15cm và AC = 20cm. Tính độ dài đường cao AH và trung tuyến AM của tam giác ABC.

 

 

1
24 tháng 7 2021

câu c bài 1 là tích diện tích của tam giác AHM nhá'

26 tháng 2 2017

a ,   Δ A B C ,   A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H ,   H ⏜ = 90 0   g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b ,   Δ A B C ,   A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2

2 tháng 9 2021

a, Ta có : \(AB=\frac{2}{3}AC\)

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{144}=\frac{1}{\left(\frac{2}{3}AC\right)^2}+\frac{1}{AC^2}\Leftrightarrow AC=6\sqrt{13}\)cm 

=> \(AB=\frac{2}{3}.6\sqrt{13}=4\sqrt{13}\)cm 

Theo định lí Pytago tam giác ABH vuông tại H 

\(BH=\sqrt{AB^2-AH^2}=8\)cm 

Theo định lí Pytago tam giác AHC vuông tại H

\(CH=\sqrt{AC^2-AH^2}=18\)cm 

=> BC = HB + HC = 8 + 18 = 26 cm 

b, Vì AM là đường trung tuyến tam giác ABC => BM = MC = BC / 2 = 13 cm 

Ta có : BH + MH = BM => MH = BM - BH = 13 - 8 = 5 cm 

11 tháng 5 2017

bạn tự vẽ hình nka !!!

a) , b) Theo định lí Py - ta - go trong   \(\Delta ABC\)vuông tại A , ta có : 

\(BC^2=AB^2+AC^2=15^2+20^2=625\)\(\Leftrightarrow BC=\sqrt{625}=25\left(cm\right)\)

    Xét \(\Delta AHB\)và   \(\Delta CAB\)có :

\(\widehat{ABC}\)chung     ;        \(\widehat{BHA}=\widehat{BAC}=90\)độ

\(\Leftrightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\)

Ta có tỉ lệ : \(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)

\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{15\cdot20}{25}=12\left(cm\right)\)

\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9\left(cm\right)\)

\(\Leftrightarrow CH=BC-BH=25-9=16\left(cm\right)\)

c) ta có :    \(AM=\frac{BC}{2}=\frac{25}{2}=12,5\left(cm\right)\)   ( do AM là đường trung tuyến ứng với cạnh huyền BC )

  Theo định lí Py - ta - go trong   \(\Delta AHM\)vuông tại H , ta có : 

\(HM^2=AM^2-AH^2=12,5^2-12^2=12,25\)\(\Leftrightarrow HM=\sqrt{12,25}=3,5\left(cm\right)\)

\(\Rightarrow S_{AHM}=\frac{1}{2}\cdot AH\cdot HM=\frac{3,5\cdot12}{2}=\frac{42}{2}=21\left(cm^2\right)\)

TK CKO MK NKA !!!

9 tháng 5 2022

a,

Xét Δ AHB và Δ CAB, có :

\(\widehat{AHB}=\widehat{CAB}=90^o\)

\(\widehat{ABH}=\widehat{CBA}\) (góc chung)

=> Δ AHB ∾ Δ CAB (g.g)

=> \(\dfrac{AH}{CA}=\dfrac{HB}{AB}\)

=> \(\dfrac{AB}{CA}=\dfrac{HB}{AH}\)

Xét Δ AHB và Δ CHA, có :

\(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\dfrac{AB}{CA}=\dfrac{HB}{AH}\) (cmt)

=> Δ AHB ∾ Δ CHA (g.g)

=> \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)

=> \(AH^2=HB.CH\)

 

9 tháng 5 2022

b, Ta có : \(AH^2=BH.CH\) (cmt)

=> \(AH^2=4.9\)

=> \(AH^2=36\)

=> AH = 6

Xét Δ AHB, có :

\(AB^2=AH^2+BH^2\)

=> \(AB^2=6^2+4^2\)

=> \(AB^2=52\)

=> AB = 7,2 (cm)

Xét Δ AHC, có :

\(AC^2=AH^2+CH^2\)

=> \(AC^2=6^2+9^2\)

=> \(AC^2=117\)

=> AC = 10,8 (cm)

Xét Δ ABC, có :

\(BC^2=AB^2+AC^2\)

=> \(BC^2=7,2^2+10,8^2\)

=> \(BC^2=168,48\)

=> BC = 12,9 (cm)

Ta có : MC = \(\dfrac{1}{2}BC\) (M là trung điểm BC do có đường trung tuyến AM)

=> MC = 6,45 (cm)

Ta có : BC = BH + HM + MC

=> 12,9 = 4 + HM + 6,45

=> HM = 12,9 - 4 - 6,45

=> HM = 2,45 (cm)

Xét Δ AMH vuông tại H, có :

\(S_{\Delta AMH}=\dfrac{1}{2}AH.HM\)

=> \(S_{\Delta AMH}=\dfrac{1}{2}.6.2,45\)

=> \(S_{\Delta AMH}=7,35\left(cm\right)\)