K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ:\(x\notin\left\{2;0\right\}\)

b: \(C=\left(\dfrac{x\left(2-x\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{2-x^2+x}{x^2}\right)\)

\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}=\dfrac{x+1}{2x}\)

c: Thay x=2017 vào C, ta được:

\(C=\dfrac{2017+1}{2\cdot2017}=\dfrac{1009}{2017}\)

a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b: \(C=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)

\(=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)-x^2-1}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}=\dfrac{1}{2x+2}\)

c: \(C=-\dfrac{1}{2}\)

=>\(\dfrac{1}{2x+2}=-\dfrac{1}{2}\)

=>2x+2=-2

=>2x=-4

=>x=-2(nhận)

d: Để C là số nguyên thì \(2x+2\inƯ\left(1\right)\)

=>\(2x+2\in\left\{1;-1\right\}\)

=>\(2x\in\left\{-1;-3\right\}\)

=>\(x\in\left\{-\dfrac{1}{2};-\dfrac{3}{2}\right\}\)

4 tháng 12 2018

a, Để C có nghĩa thì \(\hept{\begin{cases}2x-2\ne0\\2-2x\ne0\end{cases}\Rightarrow}x\ne1\)

b, Với x khác 1 thì 

\(C=\frac{x}{2x-2}+\frac{x^2+1}{2-2x}=\frac{-x}{2-2x}+\frac{x^2+1}{2-2x}=\frac{x^2-x+1}{2-2x}\)

c, \(C=-0,5\Rightarrow\frac{x^2-x+1}{2-2x}=\frac{-1}{2}\)

\(\Rightarrow2\left(x^2-x+1\right)=\left(2-2x\right).\left(-1\right)\)

\(\Rightarrow2x^2-2x+2=-2+2x\)

\(\Rightarrow2x^2-2x+2+2-2x=0\)

\(\Rightarrow2x^2-4x+4=0\Rightarrow2\left(x^2-2x+2\right)=0\)

\(x^2-2x+2=\left(x-1\right)^2+1>0\forall x\)

Do đó: \(2\left(x^2-2x+2\right)>0\forall x\)

Vậy \(x\in\varnothing\)

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

26 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)

b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)

\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)