K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

\(\frac{3x^2+7x-10}{x}=0\)

\(3x^2+7x-10=0\)

\(3x^2-3x+10x-10=0\)

\(3x\left(x-1\right)+10\left(x-1\right)=0\)

\(\left(3x+10\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+10=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-10}{3}\\x=1\end{cases}}\)

21 tháng 2 2018

\(ĐKXĐ:\)\(x\ne0\)

       \(\frac{3x^2+7x-10}{x}=0\)

\(\Rightarrow\)\(3x^2+7x-10=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\3x+10=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\left(TMĐKXĐ\right)\\x=-\frac{10}{3}\left(TMĐKXĐ\right)\end{cases}}\)

Vậy...

a: (3x-2)(4x+5)=0

=>3x-2=0 hoặc 4x+5=0

=>x=2/3 hoặc x=-5/4

b: (2,3x-6,9)(0,1x+2)=0

=>2,3x-6,9=0 hoặc 0,1x+2=0

=>x=3 hoặc x=-20

c: =>(x-3)(2x+5)=0

=>x-3=0 hoặc 2x+5=0

=>x=3 hoặc x=-5/2

NV
19 tháng 1 2024

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-2\right)}{\left(3-x\right)\left(3+x\right)}>0\)

Bảng xét dấu:

loading...

Từ bảng xét dấu ta có nghiệm của BPT là: \(x\in\left(-3;1\right)\cup\left(2;3\right)\)

a: 7x+35=0

=>7x=-35

=>x=-5

b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)

=>8-x-8(x-7)=1

=>8-x-8x+56=1

=>-9x+64=1

=>-9x=-63

hay x=7(loại)

4 tháng 3 2022

a, \(7x=-35\Leftrightarrow x=-5\)

b, đk : x khác 7 

\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)

vậy pt vô nghiệm 

2, thiếu đề 

13 tháng 5 2016

mk bấm máy ra

x\(\approx\)0,146

13 tháng 5 2016

"Hình như" ở 2 mẫu phải cùng là số 2 hoặc -2 vì theo đó, phương trình sẽ có dạng giải được. Mình sửa lại đề theo hướng đó!

\(x=0\) không phải là nghiệm của pt

Xét \(x\ne0\), chia cả tử và mẫu 2 phân số đầu cho x, ta được:

\(pt\Leftrightarrow\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)

Đặt \(t=3x+\frac{2}{x}\)

\(pt\rightarrow\frac{2}{t-1}-\frac{7}{t+5}=1\Leftrightarrow t\in\left\{-11;2\right\}\)

Thay lại giải ra x.

\(5x^2-7x+2=0\)

\(x\left(5x-2\right)-\left(5x-2\right)=0\)

\(x\left[5x-2-5x+2\right]=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\0x=0\end{cases}\Rightarrow x=0}\)

<=>5x^2-5x-2x+2=0

<=>(5x^2-5x)-(2x-2)=0

<=>5x(x-1)-2(x-1)=0

<=>(x-1)(5x-2)=0

<=>x-1=0                <=> 5x-2=0

<=>x=1                  <=>x=2/5         

10 tháng 4 2020

\(b, (2x^2 + 3x-1) - 5(2x^2 + 3x + 2) + 24 =0 \)

Đặt \(2x^2 + 3x + 1 = a \)

\(=> (a-2) - 5(a+2) + 24 = 0\)\(\)

\(=> a - 2 - 5a - 10 + 24 = 0\)

\(=> a = 3=> 2x^2 + 3x + 1 = 3\)

\(<=> 2x^2 + 3x - 2 = 0\)

\(<=> 2x^2 + 4x - x - 2 = 0\)

\(<=> (2x-1)(x+2) = 0 \)

\(<=> 2x - 1 = 0 hoặc x+2 =0\)

\(<=> x = 1/2 hoặc x = -2\)

~~