cho tam giác ABC góc A,B,C TLN vs 6,10,15 .tính số đo các góc trong tam giac ABC
GIÚP MK VS HUHUHU!!!!
ai cx dc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x,y,z là số đo các góc trong tam giác ABC tỉ lệ nghịch với 6; 10; 15.
theo đề cho ta có:
6x=10y=15z hay 6x30=10y30=15z30⇒x5=y3=z2
và x+y+z= 180
x5=y3=z2=x+y+z5+3+2=18010=18
x=18.5=90
y=18.3=54
z=18.2=36
vậy số đo các góc trong tam giác ABC lần lượt là 90;54;36
a. Xét \(\Delta ABD\) vuông tại A và \(\Delta HBD\) vuông tại H có: \(\left\{{}\begin{matrix}BD.là.cạnh.chung\\\widehat{ABD}=\widehat{HBD}\left(BD.là.tia.phân.giác.của.\widehat{ABC}\right)\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta ABD\)=\(\Delta HBD\) (c-g) \(\Rightarrow\) DA=DH(đpcm) \(\Rightarrow\)BA=BH(đpcm)
c. Xét tứ giác ABHD có: \(\widehat{DAB}+\widehat{ABH}+\widehat{BHD}+\widehat{HDA}=360^o\)
\(\Leftrightarrow90^o+\widehat{ABH}+90^o+110^o=360^o\)
\(\Rightarrow\widehat{ABC}=\widehat{ABH}=70^o\Rightarrow\widehat{ACB}=90^o-70^o=20^o\) ,\(\widehat{A}=90^o\)
AH=1/2 AC
AH=1/2 . 40 => AH = 20
Tam giác ABH vuông tại H ( GT)
Áp dụng định lý pytago ta có : AH2 + BH2 = AB2
Thay số ta đc ;202 + BH2 = 292
=> BH2 = 202 - 292 ( tự tính nha )
Tam giác ACH vuông tại H ( GT)
Áp dụng định lý pytago ta có : AH2 + CH2 = AC2 (thay số rr tự tính )
B chu vi khi tính đc BH và CH r thì tính đc BC .sau đó tính chu vi tam giác là các cạnh cộng lại vs nhau là đc
vì số đo góc A;B;C lần lượt tỉ lệ nghịch với 3;4;6 nên :
3A = 4B = 6C
=> 3A/12 = 4B/12 = 6C/12
=> A/4 = B/3 = C/2
=> A+B+C/2+3+4 = A/4 = B/3 = C/2
A+B+C = 180
=> 180/9 = A/4 = B/3 = C/2
=> 20 = A/4 = B/3 = C/2
=> A = 80; B = 60; C = 40
Xét \(\Delta\)\(ABC \) ta có : \(\widehat{A}\) + \(\widehat{B}\) + \(\widehat{C}\) = \(180 \)o
⇒\(\widehat{B}\) + \(\widehat{C}\) =\(180 \)o - \(\widehat{A} \)
⇒\(\widehat{B} + \widehat{C} = 130\)o
Vì \(\Delta\)\(ABC\) cân tại A
⇒ \(\widehat{B}=\widehat{C} = 130\)o\(: 2 = 65\)o
*Cách khác:
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{B}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của các góc ở đáy trong ΔABC cân tại A)
\(\Leftrightarrow\widehat{B}=\dfrac{180^0-50^0}{2}=65^0\)
mà \(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)
nên \(\widehat{C}=65^0\)
Vậy: \(\widehat{B}=65^0\); \(\widehat{C}=65^0\)
bạn tự vẽ hình nha
a) góc ACB=góc ECN (đối đỉnh)
góc ABC=góc ACB(tam giác ABC cân )
--> góc ABC=góc ECN
xét 2 tam giác BDM và CEN có:
cạnh BD=cạnh EC(gt)
góc BDM=góc CEN(=90độ)
góc MBC=góc ECN(chứng minh trên )
--> 2 tam giác BDM=CEN(g.c.g)
--> DM=EN(2 cạnh tương ứng)
c)xét 2 tam giác AOB và AOC có:
AB=AC(tam giác ABC cân)
góc BAO=góc CAO(tia OA là p.giác của góc A)
cạnh AO chung
--> 2 tam giác AOB=AOC(c.g.c)
Bài làm
a) Xét tam giác ABD và tam giác MBD vuông tại A
Ta có: BD là cạnh chung
góc ABD=gócMBD ( vì BD là tia phân giác của góc ABC )
BA = BM ( cạnh huyền góc nhọn )
=> Tam giác ABD = tam giác MBD ( c.g.c ) ( cạnh huyền góc nhọn ) ( đpcm )
bạn có thể tham khảo Câu hỏi của Vũ Lê Ngọc Liên - Toán lớp 7 - Học toán với OnlineMath
học tốt!!!
gọi độ dài 3 cạnh lần lượt là a,b,c có
\(\frac{a}{\frac{1}{6}}\)= \(\frac{b}{\frac{1}{10}}\)= \(\frac{c}{\frac{1}{15}}\)
vì tổng 3 góc trong 1 tam giác bằng 180 nên
\(\frac{a}{\frac{1}{6}}\) =\(\frac{b}{\frac{1}{10}}\)=\(\frac{c}{\frac{1}{15}}\)=\(\frac{a+b+c}{\frac{1}{6}+\frac{1}{10}+\frac{1}{15}}\)=\(\frac{180}{\frac{1}{3}}\)=540
\(\frac{a}{\frac{1}{6}}\)=540.\(\frac{1}{6}\)=90
\(\frac{b}{\frac{1}{10}}\)=540.\(\frac{1}{10}\)=54
\(\frac{c}{\frac{1}{15}}\)=540.\(\frac{1}{15}\)=36
chi tiết hộ mk nha!!!!TLN là tỉ lệ nghịch