K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

ý 4 ak

4) tam giác AND đồng dạng với tam giác MAB (gg)

=>\(\frac{AM}{MB}=\frac{AN}{AD}\) =>AM.AD=AN.MB => AM2.AD2=AN2.MB2 

Cộng 2 vế với AN2.AD2 

=>AM2.AD2 + AN^2.AD2 = AN2.MB2 + AN2.AD2 

=>AD2.(AM2+AN2)=AN2(MB2+AB2)

=>AD2(AM2+AN2)=AN2.AM2 (vì MB2+AB2=AM2 theo định lý pytago)

=>\(\frac{1}{AD^2}=\frac{\left(AN^2+AM^2\right)}{AM^2.AN^2}\)

=>\(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)

13 tháng 4 2016

d, tam giác AND đồng dạng với tam giác MAB (gg)=>AM/MB=AN/AD

=>AM.AD=AN.MB => AM^2.AD^2=AN^2.MB^2 

Cộng 2 vế với AN^2.AD^2 =>AM^2.AD^2 + AN^2.AD^2 = AN^2.MB^2 + AN^2.AD^2

=>AD^2.(AM^2+AN^2)=AN^2(MB^2+AB^2)

=>AD^2(AM^2+AN^2)=AN^2.AM^2 (vì MB^2+AB^2=AM^2 theo định lý pytago)

=>1/AD^2=(AN^2+AM^2)/AM^2.AN^2

=>1/AD^2=1/AM^2+1/AN^2

11 tháng 4 2016

a, Điểm A và H cùng nhìn đoạn BD dưới 1 góc 90 =>tứ giác ABHD nội tiếp

cmtt : Điểm H và C cùng nhìn đoạn BD dưới 1 goc 90 => tứ giác BHCD nội tiếp

b, Tứ giác BHCD nội tiếp =>góc CHK=góc BDC ( vì cùng bù với góc CHB)

mà góc BDC=45=>góc CHK=45

a: góc BHD=góc BAD=góc BCD=90 độ

=>A,B,H,D,C cùng nằm trên đường tròn đường kính BD

=>AHCD nội tiếp

Tâm là trung điểm của BD

b: Xét ΔBDK có

BC,DH là đường cao

BC cắt DH tại M

=>M là trực tâm

=>KM vuông góc DB

10 tháng 3 2021

1) ta có: góc BHD= góc BCD= 90độ

tứ giác BHCD có hai đỉnh H,C BD có một góc vuông

➜tứ giác BHCD là tứ giác nội tiếp

2)tứ giác BHCD là tứ giác nội tiếp (đpcm)

➜góc BDC+ góc BEC = 180 độ

mà góc CHK+ góc BEC =180 độ (bù nhau)

➩góc BDC = 45 độ (đường chéo chứa hai góc bằng nhau)➩góc CHK = 45 độ

3)xét ΔDHK và ΔBCK, ta có:

góc DHK = góc BCK = 90 độ

góc DHK chung

➜ΔDHK ∞ ΔBCK (g.g)

\(\dfrac{KC}{KH}\cdot\dfrac{KB}{KD}\)➜KC*KD=KH*KB (đpcm)

18 tháng 4 2022

a. Theo giả thiết ABCD là hình vuông nên ÐBCD = 900; BH vuông góc DE tại H nên góc BHD = 900 

=> như vậy H và C cùng nhìn BD dưới một góc bằng 900 nên H và C cùng nằm trên đường tròn đường kính BD

=> BHCD là tứ giác nội tiếp.

b. BHCD là tứ giác nội tiếp

=> góc BDC + góc BHC = 1800. (1)

góc BHK là góc bẹt nên góc KHC + góc BHC = 1800 (2).

Từ (1) và (2) => góc CHK = góc BDC mà góc BDC = 450 (vì ABCD là hình vuông)

=> góc CHK = 450 .

c. Xét tam giác KHC và tam giác KDB ta có góc CHK = góc BDC = 450 ; góc K là góc chung

=> tam giác KHC ~ tam giác KDB =>\(\dfrac{KC}{KB}\) = \(\dfrac{KH}{KD}\)

=> KC x KD = KH x KB.

d.Ta luôn có góc BHD = 900 và BD cố định nên khi E chuyển động trên cạnh BC cố định thì H chuyển động trên cung BC (E ≡ B thì H ≡ B; E ≡ C thì H ≡ C).

18 tháng 4 2022

-Ghi tham khảo vào bạn nhé! Ở đầu bài đăng ấy.

30 tháng 5 2017

A B C D K E O

  1. theo giả thiết ta có \(BH⊥DE\Rightarrow\widehat{BHD}=90^0\left(1\right)\).ABCD là hình vuông nên \(\widehat{BCD}=90^0\left(2\right)\)từ 1 và 2 ta có BHCD là tứ giác nội tiếp đường tròn tâm (O) có tâm O là trung điểm của BD
  2. Vì VBHCD nội tiếp đường tròn (O) nên\(\widehat{BHC}+\widehat{BDC}=180^0\left(3\right)\)Mà \(\widehat{BHC}+\widehat{CHK=180^0\left(4\right)}\)Từ 3,4 có \(\widehat{BCD}=\widehat{CHK}=45^0\)
  3. Do BHCD nội tiếp đường tròn (O) nên ta có phương tích từ K kẻ đến (O) là như nhau nên :KH.KB=KO2-OB(5) mà KC.KD = KO2 - OB2(6) , từ 5,6 có : KH.KB=KC.KD