K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

lớp 9 học công thức nghiệm rồi nhưng sợ bạn chưa học nên ko làm,

nhưng mình làm cách này chỉ để tham khảo thôi đấy nhé

\(x^2-18x+4=0\)

có  \(\Delta=\left(-18\right)^2-4.4=324-16=308>0\)  \(\Rightarrow\sqrt{\Delta}=2\sqrt{77}\)

vì \(\Delta>0\)  nên pt đã cho có 2 nghiệm phân biệt 

\(x_1=\frac{18-2\sqrt{77}}{2}=\frac{2\left(9-\sqrt{77}\right)}{2}=9-\sqrt{77}\)

\(x_2=\frac{18+2\sqrt{77}}{2}=\frac{2\left(9+\sqrt{77}\right)}{2}=9+\sqrt{77}\)

vậy....

21 tháng 2 2018

khi m = 3 pt có dạng 

\(x^2-18x+4=0\)

\(\Leftrightarrow x^2-2.x.9+81-81+4=0\)

\(\Leftrightarrow\left(x-9\right)^2-77=0\)

\(\Leftrightarrow\left(x-9-\sqrt{77}\right)\left(x-9+\sqrt{77}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=9+\sqrt{77}\\x=9-\sqrt{77}\end{cases}}\)

chắc vậy 

2 tháng 7 2021

`x^2 + 2(m-1)x + m^2 = 0`

Thay `m=0` vào pt và giải ta được :

`x^2 - 6x + 16 = 0`

Vì `x^2 - 6x + 16 > 0` với mọi `x`

`=>` vô nghiệm 

Vậy `S = RR`

Thay `m=-4` vào pt và giải ta được :

`x^2 + 10x + 16 = 0`

`\Delta = 10^2 - 4*1*16 = 36 > 0`

`=> \sqrt{\Delta} = 6`

`=>` Phương trình có 2 nghiệm phân biệt :

`x_1 = (-10+6)/(2*1) = -2`

`x_2 = (-10-6)/(2*1) = -8`

Vậy `S = {-2,-8}`

 

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

11 tháng 3 2022

Bài 1:

a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\ \Leftrightarrow x^2+1+7=0\\ \Leftrightarrow x^2+8=0\left(vô.lí\right)\)

Thay m=3 vào (1) ta có:

\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)

b, Thay x=4 vào (1) ta có:

\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)

c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)

\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)

\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)

11 tháng 3 2022

Bài 2:

a,Thay m=-2 vào (1) ta có:

\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)

\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)

\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)

\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2017

Lời giải:

a) Với \(m=0\) phương trình trở thành:

\((x^2-2x-3)(x^2-2x+3)=0\Leftrightarrow (x-3)(x+1)(x^2-2x+3)=0\)

\(\Rightarrow\left[\begin{matrix}x-3=0\\x+1=0\\x^2-2x+3=0\end{matrix}\right.\) \(\Leftrightarrow \) \(\left[\begin{matrix}x=3\\x=-1\\\left(x-1\right)^2+2=0\left(vl\right)\end{matrix}\right.\)

Vậy \(x\in \left\{-1,3\right\}\)

b) Để PT có $4$ nghiệm phân biết thì phương trình \(x^2-2x+2m+3=0\) phải có hai nghiệm phân biệt khác \(-1\)\(3\)

Tức là \(\left\{\begin{matrix} \Delta' =1-(2m+3)>0\\ 3^2-2.3+2m+3\neq 0\\ (-1)^2-2(-1)+2m+3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m<-1\\ m\neq -3\\ \end{matrix}\right.\)

c) Áp dụng định lý Viet cho PT \(x^2-2x+2m+3=0\) có nghiệm thỏa mãn:\(\left\{\begin{matrix}x_3+x_4=2\\x_3x_4=2m+3\end{matrix}\right.\)

\(A=x_1x_2x_3x_4=-3x_3x_4=-3(2m+3)\)

Ta có với mọi \(x_3,x_4\in\mathbb{R}\) thì đều có \(x_3x_4\leq \left(\frac{x_3+x_4}{2}\right)^2=1\)

\(\Rightarrow -3x_3x_4\geq -3\) (khi nhân với số âm thì đổi dấu)

\(\Rightarrow A_{\min }=-3\Leftrightarrow m=-1\)

Câu b với c không liên quan đến nhau phải không? Nếu không thì không tìm được min đâu.

28 tháng 2 2017

sửa đề: pt \(\left(x^2-2x-3\right)\left(x^2-2x+2m+3\right)=0\)

25 tháng 12 2021

\(a,m=4\Leftrightarrow x^2-10x=0\Leftrightarrow x\left(x-10\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\\ b,\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\)

Vậy PT luôn có 2 nghiệm phân biệt với mọi m

10 tháng 4 2018

khi m = 3. ta có : x2 - 6x + 4 = 0

\(\Delta\)' = (-3)2 - 4 = 5 > 0

=> pt có 2 nghiệm phân biệt

x1 = 3 - \(\sqrt{5}\)

x2 = 3 + \(\sqrt{5}\)

b) \(\Delta\)' = (-m)2 - 4 = m2 - 4

để pt có nghiệm thì m2 - 4 \(\ge\) 0

<=> m2 \(\ge\) 4

<=> \(\left\{{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

theo hệ thức vi - ét thì : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=4\end{matrix}\right.\)

ta có : ( x1 + 1 )2 + ( x2 + 1 )2 = 2

<=> x12+ 2x1 + 1 + x22 + 2x2 + 1 = 2

<=> x12 + x22 + 2( x1 + x2 ) = 0

<=> x12 + 2x1x2 + x22 - 2x1x2 + 2( x1 + x2 ) = 0

<=> ( x1 + x2 )2 - 2x1x2 + 2( x1+ x2 ) = 0

<=> (2m)2 - 2.4 + 2.2m = 0

<=> 4m2 + 4m - 8 = 0

nhận thấy a + b + c = 4 + 4 - 8 = 0

<=> pt có 2 nghiệm pb :

m1 = 1 ( loại )

m2 = -2 ( TM )

vậy để pt (1) thỏa mãn ( x1 + 1 )2 + ( x2 + 1 )2 = 2 thì m = -2