Cho D = \(\frac{m+5}{m^2+9}\)
Chứng minh rằng phân số D luôn tồn tại.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(n^2\ge0\forall n\inℤ\)\(\Rightarrow n^2+5\ge5\forall n\inℤ\)\(\Rightarrow n^2+5>0\forall n\inℤ\)
\(\Rightarrow n^2+5\ne0\forall n\inℤ\)(1)
Xét phân số M = \(\frac{n-2}{n^2+5}\left(n\inℤ\right)\)
Vì ta có (1) nên M luôn tồn tại
Vậy M luôn tồn tại với mọi \(n\inℤ\)p
Chú ý : Một phân số luôn tồn tại ( hay được xác định) khi mẫu số của nó khác 0.
ta có mẫu của M là : \(n^2+5>0\forall n\) thế nên M luôn tồn tại
b. ta có bảng sau
n | 0 | 2 | -5 |
M | \(-\frac{3}{5}\) | \(-\frac{1}{9}\) | \(-\frac{8}{30}\) |
Phân số M không tồn tại khi n2+15 =0 => n2= -15(vô lý vì bình phương của 1 sô nguyên luôn không âm).Do đó,n2+15 luôn khác 0 nên phân số M luôn tồn tại.
Gọi 5 số đó là a; b; c; d; e . ta có a+ b + c + d + e = 1
Không mất tính tổng quát, giả sử 0 < a < b < c < d < e
Nhận xét: c + d < \(\frac{2}{3}\). Vì nếu c + d > \(\frac{2}{3}\)
ta có: 2e > c + d > \(\frac{2}{3}\) => e > \(\frac{1}{3}\) => e + c + d > \(\frac{1}{3}\) + \(\frac{2}{3}\) = 1 . Mâu thuẫn với a + b + c + d + e = 1; và a; b; c; d; e không âm
Áp dụng bđt Cô si ta có: cd < \(\frac{1}{4}\)(c + d)2 => c.d < \(\frac{1}{9}\)
Mặt khác, 1 = a + b + c + d + e > a + 3b + e > 3b + e > 2.\(\sqrt{3be}\) => b.e < \(\left(\frac{1}{2\sqrt{3}}\right)^2=\frac{1}{12}\) < \(\frac{1}{9}\)
+) ta có: a.e < b.e < \(\frac{1}{12}\) < \(\frac{1}{9}\); b.c < c.d < \(\frac{1}{9}\); d.a < d.c < \(\frac{1}{9}\)
=> có thể sắp xếp 5 số a; b; c;d; e theo thứ tự như sau: a; e; b; c ; d đều thỏa mãn tích 2 số bất kì cạnh nhau không vượt quá \(\frac{1}{9}\)
PTHĐGĐ là:
x^2-(2m+5)x+2m+1=0
Δ=(2m+5)^2-4(2m+1)
=4m^2+20m+25-8m-4
=4m^2+12m+21=(2m+3)^2+12>=12>0 với mọi m
=>(d) luôn cắt (P) tại hai điểm phân biệt
Để phân số \(D=\frac{m+5}{m^2+9}\)luôn tồn tại
\(\Leftrightarrow m^2+9\ne0\)
Mà \(m^2\ge0\forall m\)
=> m2 + 9 > 0
=> m2 + 9 \(\ne\)0
Vậy ĐPCM
Toán lớp 6 j mà khó v trời