tìm x , y biết
\(\frac{x-4}{x-3}\)= \(\frac{4}{3}\) với x - y = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x}{3}=\frac{y}{4}\)=>\(\frac{3x}{9}=\frac{4y}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{9}=\frac{4y}{16}=\frac{3x+4y}{9+16}=\frac{5}{25}=\frac{1}{5}\)
=>\(\frac{x}{3}=\frac{1}{5}\)=>\(x=\frac{1}{5}.3=\frac{3}{5}\)
\(\frac{y}{4}=\frac{1}{5}\)=>\(y=\frac{1}{5}.4=\frac{4}{5}\)
Vậy \(x=\frac{3}{5};y=\frac{4}{5}\)
b)Ta có :
\(\frac{x}{4}=\frac{y}{5}\)=>\(\frac{2x}{8}=\frac{3y}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{3y}{15}=\frac{2x-3y}{8-15}=\frac{4}{-7}\)
=>\(\frac{x}{4}=\frac{-4}{7}\)=>\(x=\frac{-4}{7}.4=\frac{-16}{7}\)
\(\frac{y}{5}=\frac{-4}{7}\)=>\(x=\frac{-4}{7}.5=\frac{-20}{7}\)
Vậy \(x=\frac{-16}{7};y=\frac{-20}{7}\)
a) \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow3y=4x\Leftrightarrow x=\frac{3y}{4}\)
Thay \(x=\frac{3y}{4}\)vào biểu thức \(3x+4y=5\);ta được : \(\frac{3y}{4}+4y=5\)
\(\Leftrightarrow3y+4y.4=5.4\Leftrightarrow3y+16y=20\Leftrightarrow19y=20\Leftrightarrow y=\frac{20}{19}\)
Vì \(y=\frac{20}{19}\Rightarrow x=\frac{\frac{3.20}{19}}{4}=\frac{15}{19}\)
Vậy .................
Giai:
Vi x-4/y-3=4/3 <=>3(x-4)=4(y-3)
<=> 3x-12=4y-12
<=>3x=4y
=> x=4k va y =3k ( k thuoc Z , k khac 0)
ma x-y=5 => 4k-3k=5
=> k = 5
x = 4 . 5=20
y = 3.5 =15
bạn đúng đề:
\(\frac{x-5}{3}=\frac{y-4}{4}=\frac{z-3}{5}=\frac{x-5+y-4+z-3}{3+4+5}=\frac{36}{12}=3\)
\(\frac{x-5}{3}=3=\frac{x}{3}=3=9\Rightarrow x-5=9=14\Rightarrow x=14\)
\(\frac{y-4}{4}=3=\frac{y}{4}=3=12\Rightarrow y-4=12\Rightarrow16\)=> y=16
\(\frac{z-3}{5}=3=\frac{z}{5}=3=15\Rightarrow z-3=15=18\Rightarrow z=18\)
a, \(\frac{x}{4}=\frac{y}{5}\) và x + y = 4
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{4}{9}\)
=> \(\hept{\begin{cases}\frac{x}{4}=\frac{4}{9}\\\frac{y}{5}=\frac{4}{9}\end{cases}}\Rightarrow\hept{\begin{cases}9x=16\\9y=20\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{9}\\y=\frac{20}{9}\end{cases}}\)
b, \(\frac{x}{6}=\frac{y}{3}\) và x - 2y = 5
Ta có : \(\frac{x}{6}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{2y}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{2y}{6}=\frac{x-2y}{6-6}=\frac{5}{0}\) vô lý
c, \(\frac{x}{3}=\frac{y}{7}\) và x - 5y = 4
Ta có : \(\frac{x}{3}=\frac{y}{7}\)=> \(\frac{x}{3}=\frac{5y}{35}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{5y}{35}=\frac{x-5y}{3-35}=\frac{4}{-32}=\frac{-4}{32}=\frac{-1}{8}\)
=> \(\hept{\begin{cases}\frac{x}{3}=\frac{-1}{8}\\\frac{y}{7}=\frac{-1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}8x=-3\\8y=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\x=-\frac{7}{8}\end{cases}}\)
d, Tương tự áp dụng như bài a,c
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.