Tìm các số nguyên x và y biết:
a, \(\frac{x}{6}\)= \(\frac{5}{24}\)
b, \(\frac{-4}{y}\)= \(\frac{20}{14}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}\)
Vậy \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\) (đpcm)
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} = - 4\)
Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96
a) 6/2X +1 = 2/7
=6 x 7 = 2(2x+1)
42=4X + 2
42 - 2 = 4X
40 = 4X
10 =X
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{180}{12}=15\)
=>x=45; y=60; z=75
b:
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{3+4-5}=\dfrac{8}{2}=4\)
=>x=12; y=16; z=20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y + z}}{{3 + 4 + 5}} = \frac{{180}}{{12}} = 15\)
Vậy x = 3 . 15 = 45; y = 4 . 15 = 60; z = 5 . 15 = 75
b) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y - z}}{{3 + 4 - 5}} = \frac{8}{2} = 4\)
Vậy x = 3. 4 = 12; y = 4.4 = 16; z = 5.4 = 20
a) Ta có: \(\frac{x}{6}=\frac{5}{24}\)
\(\Rightarrow x.24=5.6\)
\(\Leftrightarrow x.24=30\)
\(\Leftrightarrow x=30:24=\frac{5}{4}\)
Vậy \(\frac{x}{6}=\frac{5}{24}\Leftrightarrow\frac{\frac{5}{4}}{6}\)
b) Ta có: \(\frac{\left(-4\right)}{y}=\frac{20}{14}\)
\(\Leftrightarrow\left(-4\right).14=y.20\)
\(\Leftrightarrow\left(-56\right)=y.20\)
\(\Leftrightarrow y=\left(-56\right):20=-\frac{14}{5}\)
Lưu ý: Các đề trên ko thể chuyển thành số nguyên nên mình đành ghi vậy
Cảm ơn bạn nhiều lắm nha