So sánh các số sau:
a) 111979 và 371320
b) 324680 và 237020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\)
\(37^{1320}=\left(37^2\right)^{660}=1329^{660}\)
Vì \(1329^{660}>1331^{660}\) nên \(11^{1979}< 37^{1320}\)
Bài của bạn bị nhầm chỗ này nhé: 1329660 < 1331660
a) \( - 10\) và \( - 9\) là các số nguyên âm.
Số đối của \( - 10\) là 10
Số đối của \( - 9\) là 9.
Do \(10 > 9\) nên \( - 10 < - 9\).
b) \(2\) là số nguyên dương và \( - 15\) là số nguyên âm nên \(2 > - 15\)
c) \( - 3\) là số nguyên âm nên \( - 3\) luôn nhỏ hơn 0 \(\left( { - 3 < 0} \right)\)
Bài 2:
Ta có: \(11^{1979}< 11^{1980}=1331^{660}\)
\(37^{1320}=37^{2\cdot660}=1369^{660}\)
mà \(1331^{660}< 1369^{660}\)
nên \(11^{1979}< 37^{1320}\)
a)\(\dfrac{-8}{9}< \dfrac{-7}{9}\\ \dfrac{6}{7}< \dfrac{11}{10}\)
a) Vì \(\pi>1\) nên hàm số \(log_{\pi}x\) đồng biến trên\(\left(0;+\infty\right)\)
Mà \(0,8< 1,2\) nên \(log_{\pi}0,8< log_{\pi}1,2\)
b) Vì \(0,3>1\) nên hàm số \(log_{0,3}x\) nghịch biến trên \(\left(0;+\infty\right)\)
Mà \(2<2,1\) nên \(log_{0,3}2>log_{0,3}2,1\)a) Vì \(1,3>1\) nên hàm số \(y=1,3^x\) là hàm số đồng biến trên \(\mathbb{R}.\)
Mà \(0,7>0,6\) nên \(1,3^{0,7}>1,3^{0,6}\)
b) Vì \(0,75< 1\) nên hàm số là hàm số nghịch biến trên \(\mathbb{R}.\)
Mà \(-2,3>-2,4\) nên \(0,75^{-2,3}>0,75^{-2,4}\)
a: 1,3>1
=>HS y=1,3x đồng biến trên R
=>\(1.3^{0.7}>1.3^{0.6}\)
b: 0,75<1
=>HS y=0,75x nghịch biến trên R
-2,3>-2,4
=>\(0,75^{-2,3}< 0,75^{-2,4}\)
mk mới lớp 5 thui
11^1979<37^1320
3^24680>2^37020
đúng ko?
mến yêu