Cho tam giác ABC, trung tuyến AM. Đường phân giác của góc AMB cắt AB tại I, đường phân giác của góc AMC cắt AC tại K.
a) CM MA.IB = MB.IA b) CM IK // BC
c) Gọi D là giao điểm của IK và AM. CM D là trung điểm của IK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
Tam giác ABM có MD là p/giác
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)
b) Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)
Mà: MC = BM (GT)
\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)
c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)
Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)
Mà: BM = MC (GT)
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)
=> DE // BC
a) Ta có: M là trung điểm của BC(gt)
nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)
nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)
Xét ΔAMB có MD là phân giác
nên AD/DB=AM/MB=AM/MC(1)
Xét ΔAMC có ME là phân giác
nên AE/EC=AM/MC(2)
Từ (1) và (2) suy ra AD/DB=AE/EC
hay DE//BC
Xét ΔABM có DI//BM
nên DI/BM=AD/AB(3)
Xét ΔACM cóIE//MC
nên IE/MC=AE/AC
hay IE/BM=AE/AC(4)
Xét ΔABC có DE//BC
nên AD/AB=AE/AC(5)
Từ (3), (4) và (5) suy ra DI=EI
hay I là trung điểm của DE
a: BC=2MB=90cm
Xét ΔAMB có MD là phân giác
nên AD/AM=DB/BM
=>AD/30=DB/45
=>AD/2=DB/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{2}=\dfrac{DB}{3}=\dfrac{AD+DB}{2+3}=\dfrac{50}{5}=10\)
Do đó: AD=20(cm); DB=30(cm)
b: Xét ΔAMB có MD là phân giác
nên AD/DB=AM/MB=AM/MC(1)
Xét ΔAMC có ME là phân giác
nên AE/EC=AM/MC(2)
Từ (1) và (2) suy ra AD/DB=AE/EC
hay DE//BC
a: BC=2*MB=90cm
Xét ΔMAB có MD là phân giác
nên AD/MA=BD/BM
=>AD/6=BM/9=50/15=10/3
=>AD=10/3*6=20cm; BM=10/3*9=30cm
b: Xét ΔMAC có ME là phân giác
nên AE/EC=AM/MC
=>AE/EC=AD/DB
=>ED//BC
a: Xét ΔMAB có MI là phân giác
nên AI/IB=AM/MB=AM/MC
Xét ΔAMC có MK là phân giác
nên AK/KC=AM/MC
=>AI/IB=AK/KC
=>IK//BC
b: Xét ΔABM có IO//BM
nên IO/BM=AO/AM
Xét ΔACM có OK//MC
nên OK/MC=AO/AM
=>IO/BM=OK/MC
mà BM=CM
nên IO=OK
a)
Xét tam giác AMB có: MD là pg góc AMB
=> \(\frac{AD}{BD}=\frac{AM}{BM}\) ( 1 )
Xét tam giác AMC có: MD là pg góc AMC
=> \(\frac{AE}{CE}=\frac{AM}{CM}\)
Mà BM = CM
=> \(\frac{AE}{CE}=\frac{AM}{BM}\) ( 2 )
* Từ ( 1 ) , ( 2 ) => \(\frac{AD}{BD}=\frac{AE}{CE}\)
=> DE // BC. ( định lí Ta-lét đảo )
Vậy DE // BC.
b)
Ta có: BM = CM = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)x 6 = 3 (cm)
Ta có: \(\frac{AD}{BD}=\frac{AM}{BM}\)
=> \(\frac{AD}{AM}=\frac{BD}{BM}=\frac{AD+BD}{AM+BM}=\frac{AB}{AM+BM}\)
=> \(\frac{AD}{5}=\frac{AB}{5+3}=\frac{AB}{8}\)
=> \(\frac{AD}{AB}=\frac{5}{8}\)
Xét tam giác ABC có: DE // BC
=> \(\frac{DE}{BC}=\frac{AD}{AB}\) ( hệ quả định lí Ta-lét )
=> \(\frac{DE}{6}=\frac{5}{8}\)
=> DE = 3,75 ( cm ).
Vậy DE = 3,75 cm.
a: Xét ΔMAB có MD là phân giác
nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\left(1\right)\)
Xét ΔAMC có ME là phân giác
nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)
M là trung điểm của BC
=>MB=MC(3)
Từ (1),(2),(3) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
Xét ΔABC có \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
nên DE//BC
b: Xét ΔABM có DI//BM
nên \(\dfrac{DI}{BM}=\dfrac{AI}{AM}\left(4\right)\)
Xét ΔAMC có IE//MC
nên \(\dfrac{IE}{MC}=\dfrac{AI}{AM}\left(5\right)\)
Từ (4) và (5) suy ra \(\dfrac{DI}{BM}=\dfrac{IE}{MC}\)
mà MB=MC
nên DI=IE
c: M là trung điểm của BC
=>MB=MC=BC/2=30/2=15(cm)
\(\dfrac{AD}{DB}=\dfrac{AM}{MB}\)
=>\(\dfrac{AD}{DB}=\dfrac{10}{15}=\dfrac{2}{3}\)
=>\(\dfrac{AD}{AB}=\dfrac{2}{5}\)
Xét ΔABM có DI//BM
nên \(\dfrac{DI}{BM}=\dfrac{AD}{AB}\)
=>\(\dfrac{DI}{15}=\dfrac{2}{5}\)
=>DI=6(cm)
DI=IE
=>I là trung điểm của DE
=>\(DE=2\cdot DI=12\left(cm\right)\)