K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

Tam giác ABM có MD là p/giác

\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)

b) Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)

Mà: MC = BM (GT)

\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)

c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)

Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)

Mà: BM = MC (GT)

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)

=> DE // BC

a) Ta có: M là trung điểm của BC(gt)

nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)

nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)

15 tháng 2 2022

pls giúp em với ạ

Xét ΔAMB có MD là phân giác

nên AD/DB=AM/MB=AM/MC(1)

Xét ΔAMC có ME là phân giác

nên AE/EC=AM/MC(2)

Từ (1) và (2) suy ra AD/DB=AE/EC

hay DE//BC

Xét ΔABM có DI//BM

nên DI/BM=AD/AB(3)

Xét ΔACM cóIE//MC

nên IE/MC=AE/AC

hay IE/BM=AE/AC(4)

Xét ΔABC có DE//BC

nên AD/AB=AE/AC(5)

Từ (3), (4) và (5) suy ra DI=EI

hay I là trung điểm của DE

a: BC=2MB=90cm

Xét ΔAMB có MD là phân giác

nên AD/AM=DB/BM

=>AD/30=DB/45

=>AD/2=DB/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{2}=\dfrac{DB}{3}=\dfrac{AD+DB}{2+3}=\dfrac{50}{5}=10\)

Do đó: AD=20(cm); DB=30(cm)

b: Xét ΔAMB có MD là phân giác

nên AD/DB=AM/MB=AM/MC(1)

Xét ΔAMC có ME là phân giác

nên AE/EC=AM/MC(2)

Từ (1) và (2) suy ra AD/DB=AE/EC

hay DE//BC

a: BC=2*MB=90cm

Xét ΔMAB có MD là phân giác

nên AD/MA=BD/BM

=>AD/6=BM/9=50/15=10/3

=>AD=10/3*6=20cm; BM=10/3*9=30cm

b: Xét ΔMAC có ME là phân giác

nên AE/EC=AM/MC

=>AE/EC=AD/DB

=>ED//BC

a: Xét ΔMAB có MI là phân giác

nên AI/IB=AM/MB=AM/MC

Xét ΔAMC có MK là phân giác

nên AK/KC=AM/MC

=>AI/IB=AK/KC

=>IK//BC

b: Xét ΔABM có IO//BM

nên IO/BM=AO/AM

Xét ΔACM có OK//MC
nên OK/MC=AO/AM

=>IO/BM=OK/MC

mà BM=CM

nên IO=OK

5 tháng 4 2020

A B C M D E

a) 

Xét tam giác AMB có: MD là pg góc AMB

=>  \(\frac{AD}{BD}=\frac{AM}{BM}\)        ( 1 )

Xét tam giác AMC có: MD là pg góc AMC

=> \(\frac{AE}{CE}=\frac{AM}{CM}\)

Mà BM = CM

=> \(\frac{AE}{CE}=\frac{AM}{BM}\)     ( 2 )

* Từ ( 1 ) , ( 2 ) => \(\frac{AD}{BD}=\frac{AE}{CE}\)

=> DE // BC. ( định lí Ta-lét đảo )

Vậy DE // BC.

b)

Ta có: BM = CM = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)x 6 = 3 (cm)

Ta có: \(\frac{AD}{BD}=\frac{AM}{BM}\)

=> \(\frac{AD}{AM}=\frac{BD}{BM}=\frac{AD+BD}{AM+BM}=\frac{AB}{AM+BM}\)

=> \(\frac{AD}{5}=\frac{AB}{5+3}=\frac{AB}{8}\)

=> \(\frac{AD}{AB}=\frac{5}{8}\)

Xét tam giác ABC có: DE // BC

=> \(\frac{DE}{BC}=\frac{AD}{AB}\) ( hệ quả định lí Ta-lét )

=> \(\frac{DE}{6}=\frac{5}{8}\)

=> DE = 3,75 ( cm ).

Vậy DE = 3,75 cm.

22 tháng 3 2022

giúp mình dc ko :<<<<

22 tháng 3 2022

Đợi mình chút

 

19 tháng 11 2023

a: Xét ΔMAB có MD là phân giác

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\left(1\right)\)

Xét ΔAMC có ME là phân giác

nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)

M là trung điểm của BC

=>MB=MC(3)

Từ (1),(2),(3) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

Xét ΔABC có \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

nên DE//BC

b: Xét ΔABM có DI//BM

nên \(\dfrac{DI}{BM}=\dfrac{AI}{AM}\left(4\right)\)

Xét ΔAMC có IE//MC

nên \(\dfrac{IE}{MC}=\dfrac{AI}{AM}\left(5\right)\)

Từ (4) và (5) suy ra \(\dfrac{DI}{BM}=\dfrac{IE}{MC}\)

mà MB=MC

nên DI=IE

c: M là trung điểm của BC

=>MB=MC=BC/2=30/2=15(cm)

\(\dfrac{AD}{DB}=\dfrac{AM}{MB}\)

=>\(\dfrac{AD}{DB}=\dfrac{10}{15}=\dfrac{2}{3}\)

=>\(\dfrac{AD}{AB}=\dfrac{2}{5}\)

Xét ΔABM có DI//BM

nên \(\dfrac{DI}{BM}=\dfrac{AD}{AB}\)

=>\(\dfrac{DI}{15}=\dfrac{2}{5}\)

=>DI=6(cm)

DI=IE

=>I là trung điểm của DE

=>\(DE=2\cdot DI=12\left(cm\right)\)