K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

a) \(\frac{3n-2}{4n-3}\)

gọi \(\text{Ư}CLN_{\left(3n-2;4n-3\right)}=d\)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)

\(\Rightarrow12n-8-12n+9⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy phân số \(\frac{3n-2}{4n-3}\) là phân số tối giản

b) \(\frac{4n+1}{6n+1}\)

gọi \(\text{Ư}CLN_{\left(4n+1;6n+1\right)}=d\)

\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}}\)

\(\Rightarrow12n+3-12n-2⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy phân số \(\frac{4n+1}{6n+1}\) là phân số tối giản

20 tháng 2 2018

hay nhỉ, tự hỏi tự trả lời

a: Gọi d=ƯCLN(16n+5;6n+2)

=>16n+5 và 6n+2 chia hết cho d

=>48n+15-48n-16 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+3;4n+8)

=>4n+8-4n-6 chia hết cho d

=>2 chia hết cho d

mà 2n+3 lẻ

nên d=1

=>ĐPCM

2 tháng 3 2023

DPCM là j vậy bạn

 

22 tháng 2 2018

a, \(\frac{3n-2}{4n-3}\) 

Gọi ƯCLN ( 3n - 2 ; 4n - 3 ) là d .

\(\Rightarrow\) 3n - 2 ⋮ d

          4n - 3 ⋮ d 

\(\Rightarrow\) 4n - 3 + 3n - 2 ⋮ d

\(\Rightarrow\)( 12n - 9 )+ ( 12n - 8 ) ⋮ d

\(\Rightarrow\) ( 12n - 12n ) + ( 9 - 8 ) ⋮ d

\(\Rightarrow\) 1 ⋮ d

\(\Rightarrow\) d = 1 .

\(\Rightarrow\) 4n - 3 và 3n - 2 là hai số nguyên tố cùng nhau . 

Vậy \(\frac{3n-2}{4n-3}\) là phân số tối giản .

b, \(\frac{4n+1}{6n+1}\) 

Gọi  ƯCLN ( 4n + 1 ; 6n + 1 ) là d .

\(\Rightarrow\) 4n + 1 ⋮ d 

         6n + 1 ⋮ d

\(\Rightarrow\) 4n + 1 - 6n + 1 ⋮ d

\(\Rightarrow\) ( 12n + 3 ) - ( 12n + 2 ) ⋮ d.

.\(\Rightarrow\) ( 12n - 12n ) + ( 3 - 2 ) ⋮ d

\(\Rightarrow\) 1 ⋮ d

\(\Rightarrow\) d = 1

\(\Rightarrow\) 4n + 1 và 6n + 1 là hai số nguyên tố cùng nhau .

Vậy \(\frac{4n+1}{6n+1}\) là phân số tối giản .

:)

Chúc bạn học tốt !

22 tháng 2 2018

a) Để phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản 

=> ƯCLN ( 3n - 2 ; 4n - 3 ) = 1

Gọi ƯCLN ( 3n - 2 ; 4n - 3 ) = d

=> 3n - 2 \(⋮\)d và 4n - 3 \(⋮\)d ( 1 )

Từ ( 1 ) 

=> 4 . ( 3n - 2 )  \(⋮\)d và 3 . ( 4n - 3 )  \(⋮\)

=> 12n - 8  \(⋮\)d và 12n - 9  \(⋮\)d  ( 2 )

Từ ( 2 )

=> ( 12n - 9 ) - ( 12n - 8 )  \(⋮\)

=> 1  \(⋮\)

=> d \(\in\)Ư ( 1 )

=> d = 1

=>  Phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản với mọi n \(\in\)\(ℕ^∗\)

14 tháng 4 2019

Bạn chọn vào câu tương tự của bạn trên OLM sẽ có bài tham khảo nha

=))) Mong bạn hiểu

Mik chưa bt làm nên cho bn coi bài của ngta =))

14 tháng 4 2019

a) Gọi (3n-2,4n-3) = d

=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\)=>\(\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

=>\(\left(12n-8\right)-\left(12n-9\right)⋮d\)

=>\(1⋮d\)

=>\(d=1\)=>\(\frac{3n-2}{4n-3}\)là phân số tối giản

b) Gọi  (4n+1,6n+1) = d

=>\(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}\)

=> \(\left(12n+3\right)-\left(12n+2\right)⋮d\)

=> \(1⋮d\)

=> \(d=1\)

=> \(\frac{4n+1}{6n+1}\)là phân số tối giản

20 tháng 2 2018

1) Vì ƯCLN ( n + 5 ; n + 6 ) = 1

2) Gọi ƯCLN ( 3n + 5 ; 4n + 7 ) là d

  => ( 3n + 5 ) \(⋮\)d

        ( 4n + 7 ) \(⋮\)d

=>   4(3n + 5 ) \(⋮\)d

       3 ( 4n + 7 ) \(⋮\)d

=> 12n + 20 \(⋮\)d

     12n + 21 \(⋮\)d

=> d = 1

=>3n+5/4n+7 là phân số tối giản

câu 3 làm tương tự câu 2

            #๖ۣۜβσʂʂ彡

20 tháng 2 2018

Bổ sung câu 1 của Thiên Ân :

Để \(\frac{n+5}{n+6}\)là phân số tối giản 

=> ƯCLN ( n + 5 ; n + 6 ) = 1

Gọi ƯCLN ( n + 5 ; n + 6 ) = d

=> n + 5 \(⋮\)d và n + 6  \(⋮\)d  ( 1 )

Từ 1 

=> ( n + 6 ) - ( n + 5 )  \(⋮\)

=> 1  \(⋮\)d  

=> d \(\in\)Ư ( 1 )

=> d = 1

=>  \(\frac{n+5}{n+6}\)là phân số tối giản => đpcm

3 tháng 7 2017

a) \(\frac{n+3}{n+4}\)vì \(\frac{3}{4}\)là phân số tối giản nên bất kì số n nào cộng với \(\frac{3}{4}\)đều là p/s tối giản

b) \(\frac{3n+3}{9n+8}\)\(\frac{3}{9}+\frac{3}{8}=\frac{51}{72}\)vì \(\frac{51}{72}\)là p/s tối giản nên phép tính là p/s tối giản

c) Làm tương tự như b