K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔACE vuông tại A và ΔAKE vuong tại K có

AE chung

góc CAE=góc KAE

Do đó: ΔACE=ΔKAE
Suy ra: AC=AK

b: Xét ΔEBA có góc EAB=góc EBA

nên ΔEAB cân tại E

mà EK là đường cao

nên K là trung điểm của AB

hay KA=KB

c: Gọi giao điểm của DB và AC là M

Xét ΔAMB có

BC là đường cao

AD là đường cao

BC cắt AD tại E

Do đó:E là trực tâm

=>M,E,K thẳng hàng

=>AC.BD,KE đồng quy

2 tháng 2 2019

Chọn B

Gọi D là hình chiếu của S lên mặt phẳng (ABC), suy ra  S D ⊥ A B C .

Ta có  S D ⊥ A B  và  S B ⊥ A B ( g t ) , suy ra  A B ⊥ S B D ⇒ B A ⊥ B D .

 

Tương tự có  A C ⊥ D C  hay tam giác ACD vuông ở C.

Dễ thấy  ∆ S B A = ∆ S C A  (cạnh huyền và cạnh góc vuông), suy ra SB=SC. Từ đó ta chứng minh được  ∆ S B D = ∆ S C D  nên cũng có DB=DC.

 

Vậy DA là đường trung trực của BC, nên cũng là đường phân giác của góc  B A C ^ .

Ta có  D A C ^ = 30 o , suy ra  D C = a 3 . Ngoài ra góc giữa hai mặt phẳng (SAB) và (ABC) là  S B D ^ = 60 o  suy ra  tan S B D ^ = S D B D ⇒ S D = B D tan S B D ^ = a 3 . 3 = a
Vậy V S . A B C = 1 3 . S ∆ A B C . S D = 1 3 a 2 3 4 . a = a 3 3 12

22 tháng 4 2015

a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :

Góc AHC = góc BAC = 90o; góc C chung

=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)

b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144

=> \(AB=\sqrt{144}=12\left(cm\right)\)

Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')

=> Góc BIH = góc ADB

Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB

=> Tam giác AID cân tại A

d) ('Mình ko biết')

28 tháng 7 2016

a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :

Góc AHC = góc BAC = 90o; góc C chung

=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)

b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144

=> \(AB=\sqrt{144}=12\left(cm\right)\)

Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')

=> Góc BIH = góc ADB

Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB

=> Tam giác AID cân tại A

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cma)Tính AHb)CM: Tam giác ABH=tam giác ACHc)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE când)CM:AH là trung trực của DEBài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại Ha)Tam giác ADB=tam giác ACEb)Tam giác AHC cânc)ED song song BCd)AH cắt BC tại K, trên HK lất M sao...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm

a)Tính AH

b)CM: Tam giác ABH=tam giác ACH

c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân

d)CM:AH là trung trực của DE

Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H

a)Tam giác ADB=tam giác ACE

b)Tam giác AHC cân

c)ED song song BC

d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông

Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:

a)tam giác ABD=tam giác EBD

b)Tam giác ABE là tam giác cân

c)DF=DC

Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm

a) Tính BC

b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC

c)CM: DE đi qua trung điểm cạnh BC

0
5 tháng 4 2022

sửa đề nha

cho tam giác ABC vuông tại A , trên tia đối tia AB lấy đỉnh M sao cho AB=AM a. CMR : tam giác ABC = tam giác AMC

b. kẻ AH vuông góc với BC tại H kẻ AK vuông gói với MC tại K CMR : BH = MK

c. CMR : HK // BM

 

5 tháng 4 2022

Xét \(\Delta BACvà\Delta MACcó\)

AC:chung 

AM=AB(gt)

\(\widehat{MAC}=\widehat{BAC}\)( vì AC⊥BC)