Cho DABC cân tại A .Trên AB lấy điểm M, trên AC lấy điểm N sao cho AM=AN;gọi I là giao điểm của NB và MC
a) Chứng minh: DANB = DAMC
b) Chứng minh: MN // BC
c) Gọi D là trung điểm của BC .Chứng minh:A ,I ,D thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 2 1 1 2 1 2 A M N B C
a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC
a: Xét ΔABC co AB=AC
nên ΔABC cân tại A
b: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
Do đó: ΔABM=ΔACM
=>MB=MC
mà AB=AC
nên AM là trung trực của BC
Kẻ tia NM cắt BC tại H
có AM=AN và góc BAC=90 => tam giác AMN vuông cân tại A
=> góc HNA=45
do tam giác ABC vuông cân => góc ACB=45
tam giác HNC có góc HNA+ACB=90
=> tam giác HNC vuông tại H
=> NH vuông góc BC
do tam giác ABC vuông tại A => BA vuông góc NC
mà NH và AB cắt nhau tại M
xét tam giác BNC có NH và BA là hai đường cao cắt nhau tại M
=> M là trực tâm tam giác BNC
=> CM vuông góc BN
Tam giác AMN có: AM = AN
=> tgiac AMN là tam giác cân
=> \(\widehat{AMN}=\widehat{ANM}=\frac{180^0-\widehat{A}}{2}\) (1)
Tgiac ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra: \(\widehat{AMN}=\widehat{ABC}\)
mà 2 góc này đồng vị
=> MN // BC
a: BC=10cm
b: Xét ΔCAB vuông tại A và ΔMAN vuông tại A có
AB=AN
AC=AM
Do đó: ΔCAB=ΔMAN
Suy ra: CB=MN
a) Xét \(\Delta BACvà\Delta NAMcó\)
\(\widehat{BAC}=\widehat{NAM}\) ( đối đỉnh )
\(BA=NA\) ( gt )
\(CA=MA\) ( gt )
\(\Rightarrow\Delta BAC=\Delta NAM\) ( c.g.c )
\(\Rightarrow BC=MN\) ( 2 cạnh tương ứng )
mik chỉ lm đc v hoi xin lũi bn do chx hiểu cái ý 2 câu a
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)
a: Xét ΔANB và ΔAMC có
AN=AM
góc BAN chung
AB=AC
=>ΔANB=ΔAMC
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
góc MBC=góc NCB
BC chung
=>ΔMBC=ΔNCB
=>góc IBC=góc ICB
=>IB=IC
mà AB=AC
nen AI là trung trực của BC
=>A,I,D thẳng hàng