Cho DABC cân tại A .Trên AB lấy điểm M, trên AC lấy điểm N sao cho AM=AN;gọi I là giao điểm của NB và MC
a) Chứng minh: DANB = DAMC
b) Chứng minh: MN // BC
c) Gọi D là trung điểm của BC .Chứng minh:A ,I ,D thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC
a: Xét ΔABC co AB=AC
nên ΔABC cân tại A
b: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
Do đó: ΔABM=ΔACM
=>MB=MC
mà AB=AC
nên AM là trung trực của BC
Kẻ tia NM cắt BC tại H
có AM=AN và góc BAC=90 => tam giác AMN vuông cân tại A
=> góc HNA=45
do tam giác ABC vuông cân => góc ACB=45
tam giác HNC có góc HNA+ACB=90
=> tam giác HNC vuông tại H
=> NH vuông góc BC
do tam giác ABC vuông tại A => BA vuông góc NC
mà NH và AB cắt nhau tại M
xét tam giác BNC có NH và BA là hai đường cao cắt nhau tại M
=> M là trực tâm tam giác BNC
=> CM vuông góc BN
Tam giác AMN có: AM = AN
=> tgiac AMN là tam giác cân
=> \(\widehat{AMN}=\widehat{ANM}=\frac{180^0-\widehat{A}}{2}\) (1)
Tgiac ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra: \(\widehat{AMN}=\widehat{ABC}\)
mà 2 góc này đồng vị
=> MN // BC
a: BC=10cm
b: Xét ΔCAB vuông tại A và ΔMAN vuông tại A có
AB=AN
AC=AM
Do đó: ΔCAB=ΔMAN
Suy ra: CB=MN
a) Xét \(\Delta BACvà\Delta NAMcó\)
\(\widehat{BAC}=\widehat{NAM}\) ( đối đỉnh )
\(BA=NA\) ( gt )
\(CA=MA\) ( gt )
\(\Rightarrow\Delta BAC=\Delta NAM\) ( c.g.c )
\(\Rightarrow BC=MN\) ( 2 cạnh tương ứng )
mik chỉ lm đc v hoi xin lũi bn do chx hiểu cái ý 2 câu a
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)
a: Xét ΔANB và ΔAMC có
AN=AM
góc BAN chung
AB=AC
=>ΔANB=ΔAMC
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
góc MBC=góc NCB
BC chung
=>ΔMBC=ΔNCB
=>góc IBC=góc ICB
=>IB=IC
mà AB=AC
nen AI là trung trực của BC
=>A,I,D thẳng hàng