K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

A B C M N  

Xét tam gia ABM va ANC co:

  AB = AC(gt)

  \(\widehat{B}\) =\(\widehat{C}\) (gt)

BM =NC (gt)

=> \(\Delta\) ABM =\(\Delta\) ANC (C.G.C)

a: Xét ΔAOM vuông tại O và ΔAON vuông tại O có

AM=AN

AO chung

Do đó: ΔAOM=ΔAON

19 tháng 3 2022

a, Xét tg AHB và tg AHC, có:

AB=AC(tg cân)

góc AHB= góc AHC(=90o)

góc B= góc C(tg cân)

=> tg AHB= tg AHC(ch-gn)

b,Xét tg BMH và tg CNH, có: 

góc B= góc C(tg cân)

BH=CH(2 cạnh tương ứng)

góc BMH= góc CNH(=90o)

=> tg BMH= tg CNH(ch-gn)

Xét tg AMH và tg ANH, có: 

AH chung.

góc AMH= góc ANH(=90o)

MH=HN(2 cạnh tương ứng)

=> tg AMH= tg ANH(ch- cgv)

=> AM=AN(2 cạnh tương ứng)

=> tg AMN là tg cân.

c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:

Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.

Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:

MN // BC.

19 tháng 3 2022

Bạn tự vẽ hình nha. Máy mình ko vẽ đc.

1: \(S=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

2: Xét ΔABC vuông tại A có AH là đường cao

nên \(AC^2=HC\cdot BC\)

3: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

=>AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN∼ΔACB

4 tháng 3 2022

TK

1: S = 8 ⋅ 6 2 = 24 ( c m 2 ) 2: Xét ΔABC vuông tại A có AH là đường cao nên A C 2 = H C ⋅ B C 3: Xét ΔAHB vuông tại H có HM là đường cao nên A M ⋅ A B = A H 2 ( 1 ) Xét ΔAHC vuông tại H có HN là đường cao nên A N ⋅ A C = A H 2 ( 2 ) Từ (1) và (2) suy ra A M ⋅ A B = A N ⋅ A C =>AM/AC=AN/AB Xét ΔAMN vuông tại A và ΔACB vuông tại A có AM/AC=AN/AB Do đó: ΔAMN∼ΔACB

26 tháng 11 2018

dcm là cn nào mạo danh t lấy ảnh t rảnh lol mà bn

1 tháng 4 2020

B H M A C N

( Hình ảnh chỉ mang tính chất minh họa )

a) Tính BC và AH :

Tam giác ABC vuông tại A, áp dụng định lý Pytago vào tam giác ABC :

AB2+AC2=BC2AB2+AC2=BC2

82+152=BC282+152=BC2

BC=17(cm)⇒BC=17(cm)

Ta có : SABC=12ABAC=12AHBCSABC=12⋅AB⋅AC=12⋅AH⋅BC

AH=ABACBC=81517=12017(cm)⇔AH=AB⋅ACBC=8⋅1517=12017(cm)

b) Có Aˆ=900A^=900(giả thiết), Mˆ=900M^=900(hình chiếu), Nˆ=900N^=900(hình chiếu)

=> Tứ giác AMHN là hình chữ nhật (tứ giác có 3 góc bằng 90 độ).

Vì tứ giác AMHN là hình chữ nhật => Hai đường chéo bằng nhau.

MN=AH=12017(cm)⇒MN=AH=12017(cm)

c) Vì N là hình chiếu của H trên AC NAC⇒N∈AC

mà MHMH//AN(hcn)AN(hcn) => MHMH//ACAC

Theo hệ quả của định lý Ta-let => AMAB=ANACAMAB=ANAC

Suy ra : AMAC=ANAB(đpcm)