-Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O;góc ABD=góc ACD.Gọi E là giao điểm của hai cạnh kéo dài AD và BC.Chứng minh rằng:
a,▲AOB đồng dạng ▲DOC
b,▲AOD đồng dạng ▲BOC
c,EA.ED=EB.EC
giúp mình với nha cảm ơn các bạn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC, OCD và ODA.
Xét ΔOAD và ΔOCB có
\(\widehat{OAD}=\widehat{OCB}\)
OA=OC
\(\widehat{AOD}=\widehat{COB}\)
Do đó: ΔOAD=ΔOCB
=>AD=BC
\(\widehat{OAD}=\widehat{OCB}\)
mà hai góc này ở vị trí so le trong
nên AD//BC
Xét tứ giác ABCD có
AD//BC
AD=BC
Do đó: ABCD là hình bình hành
a,
Vì tam giác BAO đồng dạng BDC
=> \(\dfrac{AB}{DC}=\dfrac{AO}{DO}\)
=> \(AB.DO=DC.AO\)
Xét △ ABO và △ DCO,ta có:
∠ (BAO) = ∠ (BDC) (gt)
Hay ∠ (BAO) = ∠ (ODC)
∠ (AOB) = ∠ (DOC) (đối đỉnh)
Vậy △ ABO đồng dạng △ DCO (g.g)
Vì △ ABO đồng dạng △ DCO nên:
∠ B 1 = ∠ C 1 (1)
Mà ∠ C 1 = ∠ C 2 = ∠ (BCD) = 90 0 (2)
Trong △ ABD, ta có: ∠ A = 90 0
Suy ra: ∠ B 1 = ∠ D 2 = 90 0 (3)
Từ (1), (2) và (3): Suy ra: ∠ C 2 = ∠ D 2
Xét △ BCO và △ ADO, ta có:
∠ C 2 = ∠ D 2 (chứng minh trên)
∠ (BOC) = ∠ (AOD) (đối đỉnh)
Vậy △ BOC đồng dạng △ ADO (g.g).