ai giải dùm bài này nha
cho hàm số y=f{x}=|3x-2|
tìm x biết f(x)=0;f(x)=1 phần 4;f(x)=2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: f(0)=1
f(2)=-3x2+1=-6+1=-5
f(-2)=-3x2+1=-5
f(-1/2)=-3x1/2+1=-3/2+1=-1/2
b: f(x)=-3
=>-3|x|+1=-3
=>-3|x|=-4
=>|x|=4/3
=>x=4/3 hoặc x=-4/3
+) Với x = 2 ta có: f(2) + 2f(0) = 2.3
f(2) + 2f(0) = 6 (1)
+) Với x = 0 ta có: f(0) + 2f(2) = 0.3
f(0) + 2f(2) = 0
=> 2f(0) + 4f(2) = 0 (2)
Lấy (1) trừ (2) ta có:
-3f(2) = 6
=> f(2) = -2
Bài 1 : làm tương tự với bài 2;3 nhé
Ta có : \(f\left(0\right)=c=2010;f\left(1\right)=a+b+c=2011\)
\(\Rightarrow f\left(1\right)=a+b=1\)
\(f\left(-1\right)=a-b+c=2012\Rightarrow f\left(-1\right)=a-b=2\)
\(\Rightarrow a+b=1;a-b=2\Rightarrow2a=3\Leftrightarrow a=\dfrac{3}{2};b=\dfrac{3}{2}-2=-\dfrac{1}{2}\)
Vậy \(f\left(-2\right)=4a-2b+c=\dfrac{4.3}{2}-2\left(-\dfrac{1}{2}\right)+2010=6+1+2010=2017\)
\(f\left(3\right)=3a-3=9\)
\(3a=12\Rightarrow a=4\)
\(f\left(5\right)=5a-3=11\)
\(5a=14\Rightarrow a=\dfrac{14}{5}\)
\(f\left(-1\right)=-a-3=6\)
\(-a=9\Rightarrow a=9\)
Bài 8:
a) f(-1) = (-1) - 2 = -3
f(0) = 0 - 2 = -2
b) f(x) = 3
\(\Rightarrow x-2=3\)
\(x=3+2\)
\(x=5\)
Vậy \(x=5\) thì f(x) = 3
c) Thay tọa độ điểm A(1; 0) vào hàm số, ta có:
VT = 0; VP = 1 - 2 = -1
\(\Rightarrow VT\ne VP\)
\(\Rightarrow\) Điểm A(1; 0) không thuộc đồ thị của hàm số đã cho
Thay tọa độ điểm B(-1; -3) vào hàm số, ta có:
VT = -3; VP = -1 - 2 = -3
\(\Rightarrow VT=VP=-3\)
\(\Rightarrow\) Điểm B(-1; -3) thuộc đồ thị hàm số đã cho
Thay tọa độ điểm C(3; -1) vào hàm số, ta có:
VT = -1; VP = 3 - 2 = 1
\(\Rightarrow VT\ne VP\)
\(\Rightarrow\) Điểm C(3; -1) không thuộc đồ thị hàm số đã cho.
Ta có: \(y=f\left(x\right)=\left|3x-2\right|\)
+) Thay \(f\left(x\right)=0\)
\(\Rightarrow0=\left|3x-2\right|\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
Vậy \(x=\frac{2}{3}\)
+) Thay \(f\left(x\right)=\frac{1}{4}\)
\(\Rightarrow\left|3x-2\right|=\frac{1}{4}\)
\(\Rightarrow3x-2=\pm\frac{1}{4}\)
+ \(3x-2=\frac{1}{4}\)
\(\Rightarrow3x=\frac{9}{4}\)
\(\Rightarrow x=\frac{3}{4}\)
+ \(3x-2=\frac{-1}{4}\)
\(\Rightarrow3x=\frac{7}{4}\)
\(\Rightarrow x=\frac{7}{12}\)
Vậy \(x\in\left\{\frac{3}{4};\frac{7}{12}\right\}\)
+) Thay \(f\left(x\right)=2012\)
\(\Rightarrow\left|3x-2\right|=2012\)
\(\Rightarrow3x-2=\pm2012\)
+ \(3x-2=2012\Rightarrow3x=2014\Rightarrow x=\frac{2014}{3}\)
+ \(3x-2=-2012\Rightarrow3x=-2010\Rightarrow x=\frac{-2010}{3}\)
Vậy \(x\in\left\{\frac{2014}{3};\frac{-2010}{3}\right\}\)
Ta có: y = f(x) = |3x - 2|
- Với f(x) = 0 thì:
|3x - 2| = 0
=> 3x - 2 = 0
=> 3x = 0 + 2
=> 3x = 2
=> x = \(\frac{2}{3}\)
- Với f(x) = \(\frac{1}{4}\) thì:
|3x - 2| = \(\frac{1}{4}\)
\(\Rightarrow\left\{\begin{matrix}3x-2=\frac{1}{4}\\3x-2=-\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}3x=\frac{1}{4}+2=\frac{9}{4}\\3x=-\frac{1}{4}+2=\frac{7}{4}\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x=\frac{9}{4}\div3=\frac{3}{4}\\x=\frac{7}{4}\div3=\frac{7}{12}\end{matrix}\right.\)
- Với f(x) = 2012 thì:
|3x - 2| = 2012
\(\Rightarrow\left\{\begin{matrix}3x-2=2012\\3x-2=-2012\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}3x=2012+2=2014\\3x=-2012+2=-2010\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x=\frac{2014}{3}\\x=-\frac{2010}{3}=-670\end{matrix}\right.\)