cho d1:3x+y=2m+9 ;d2:x+y=5 a)tìm m để 2 đường thẳng cắt nhau tại A(x,y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, để (d) // (d1) thì \(\left\{{}\begin{matrix}-m=3\\2m-3\ne-m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\m\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow m=-3\)
b, để (d) ⊥ (d1) thì \(-m.3=-1\Rightarrow-m=-\dfrac{1}{3}\Rightarrow m=\dfrac{1}{3}\)
Ta có: (d2): y=3x-2y=1 => y: 3x-2y-1
Phương trình tung độ giao điểm của (d1) và (d2) là:
3x-2 = 3x-2y-1 => 3x-3x+2y=-1+2 => 2y=1 => y = 1/2
=> x = (1/2+2):3 = 5/6
Vậy (d1) và (d2) cùng đi qua điểm C(5/6; 1/2)
Thay x = 5/6 và y = 1/2 vào (d3) ta được: 1/2 = (m-2).5/6+2m-3
=> 1/2 = 5/6m - 5/3 + 2m - 3
=> 31/6 = 17/6 m
=> m = 31/17
Vậy m = 31/17 thì 3 đường thẳng (d1);(d2);(d3) cùng đi qua 1 điểm
Để đường thẳng (d1) cắt đường thẳng (d2) thì:
\(a\ne a'\)
\(\Rightarrow3\ne1-2m\)
\(\Leftrightarrow2m\ne-2\)
\(\Leftrightarrow m\ne-1\)
Vậy \(m\ne-1\)thì đường thẳng (d1) và đường thẳng (d2) cắt nhau.
Họcc tốtt.
đt d2 : 3x - 2y = 1 => y = 3/2x - 1/2
Hai đt d1 và d2 có hệ số góc khác nhau nên chúng cắt nhau tại điểm M.Xét pt hoành độ : 3x - 2 = 3/2x - 1/2 <=> x = 1 => y = 1.
Vậy tọa độ điểm \(M\left(1;1\right)\)
Để cho d1,d2,d3 cùng đi qua 1 điểm thì d3 phải di qua M.
\(\Rightarrow\left(d_3\right)\in M\Leftrightarrow1=\left(m-2\right).1+2m-3\Leftrightarrow m=2\)
Vậy ...
a: Để (d)//d1 thì \(\left\{{}\begin{matrix}m^2+m-6=0\\m+1\ne-2\end{matrix}\right.\Leftrightarrow m=2\)
Phương trình hoành độ giao điểm A của (d1) và (d2);
\(3x-8=-2x-3\Rightarrow x=1\Rightarrow y=-5\Rightarrow A\left(1;-5\right)\)
Để 3 đường thẳng đồng quy thì (d3) đi qua A
\(\Rightarrow3m.1+2m+1=-5\Rightarrow5m=-6\Rightarrow m=-\frac{6}{5}\)