cho a;b;c;d >0 thỏa mãn a+b+c+d=1
tìm min của M=\(\frac{â^4+b^4+c^4+d^4}{a^3+b^3+c^3+d^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Áp dụng bất đẳng thức bu nhi a ta có
\(\left(a^3+b^3+c^3+d^3\right)^2\le\left(a^4+b^4+c^4+d^4\right)\left(a^2+b^2+c^2+d^2\right)\)
=> \(\frac{a^4+b^4+c^4+d^4}{a^3+b^3+c^3+d^3}\ge\frac{a^3+b^3+c^3+d^3}{a^2+b^2+c^2+d^2}\)
tương tự ta có
\(\frac{a^3+b^3+c^3+d^3}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{a+b+c+d}\)
mà \(\left(a+b+c+d\right)^2\le\left(a^2+b^2+c^2+d^2\right)\left(1+1+1+1\right)\Rightarrow a^2+b^2+c^2+d^2\ge1\)
từ đó ta có
\(\frac{a^4+b^4+c^4+d^4}{a^3+b^3+c^3+d^3}\ge\frac{1}{2}\)
dấu = xảy ra <=> \(a=b=c=d=\frac{1}{2}\)
sai rồi bạn