Cho b2 = a.c; chứng minh rrằng a2+b2/b2+c2= a/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta có:
\(\frac{{AB'}}{{AB}} = \frac{2}{6} = \frac{1}{3}\) và \(\frac{{AC'}}{{AC}} = \frac{5}{{15}} = \frac{1}{3}\).
b) Vì \(B'E//BC\) và\(B'E\) cắt \(AC\) tại \(E\) nên theo định lí Thales ta có:
\(\frac{{AB'}}{{AB}} = \frac{{AE}}{{AC}} \Rightarrow \frac{2}{6} = \frac{{AE}}{{15}} \Rightarrow AE = \frac{{2.15}}{6} = 5cm\)
c) Ta có: \(AE = AC' = 5cm\).
d) Điểm \(E \equiv C'\) và đường thẳng \(B'C' \equiv B'E\).

Bài 2:
a: Gọi I là trung điểm của MC
Ta có: \(MI=IC=\dfrac{MC}{2}\)
\(AM=\dfrac{MC}{2}\)
Do đó: AM=MI=IC
=>AM=MI
=>M là trung điểm của AI
Xét ΔBMC có
D,I lần lượt là trung điểm của CB,CM
=>DI là đường trung bình của ΔBMC
=>DI//BM và \(DI=\dfrac{BM}{2}\)
DI//BM
O\(\in\)BM
Do đó: DI//OM
Xét ΔADI có
M là trung điểm của AI
MO//DI
Do đó: O là trung điểm của AD
b: Xét ΔADI có O,M lần lượt là trung điểm của AD,AI
=>OM là đường trung bình của ΔADI
=>\(OM=\dfrac{1}{2}DI=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BM=\dfrac{1}{4}BM\)
Bài 1:
a: \(\dfrac{AB'}{AB}=\dfrac{AC'}{AC}\)
=>\(\dfrac{AB}{AB'}=\dfrac{AC}{AC'}\)
=>\(\dfrac{AB-AB'}{AB'}=\dfrac{AC-AC'}{AC'}\)
=>\(\dfrac{BB'}{AB'}=\dfrac{CC'}{AC'}\)
=>\(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)
b: Ta có: \(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)
=>\(\dfrac{AB'+BB'}{BB'}=\dfrac{AC'+CC'}{CC'}\)
=>\(\dfrac{AB}{BB'}=\dfrac{AC}{CC'}\)
=>\(\dfrac{BB'}{AB}=\dfrac{CC'}{AC}\)

A C 20 cm B 10 cm
Trên đoạn thẳng AC, điểm B nằm giữa hai điểm A và C vì AB < AC ( 20 cm < 10 cm ) ( 1 )
Ta có : AB + BC = AC
10 + BC = 20 ( cm )
=> BC = 10 ( cm )
Vậy AB = BC ( = 10 cm ) ( 2 )
Từ ( 1 ) và ( 2 ) ta chứng minh được B là trung điểm của đoạn thẳng AC

Trên tia Ax có AB=3 cm < AC=6 cm vậy B nằm giữa A và C
Ta có : AC = AB + BC
6 = 3 + BC
---> BC = 6-3 = 3 cm
B là trung điểm của A và C vì B nằm giữa A,C và AB=BC=3cm

Ta có : \(\dfrac{AB}{AC}=\dfrac{1}{4}\Rightarrow\dfrac{AB}{60}=\dfrac{1}{4}\Rightarrow AB=\dfrac{60}{4}=15\)
ap dung bdt x^2+y^2>=2xy ta co:
a^2/b^2+c^2/a^2 >=2 c/b
b^2/c^2+c^2/a^2 >=2 b/a
a^2/b^2 +b^2/c^2>=2 a/c
cong thoe tung ve :
2 VT>= 2VP
=>VT>=VP(dpcm)
dau "=" xay ra khi a=b=c
Bạn viết dấu được không