cho a+b+c=0;chứng minh rằng a3+a2c-abc+b2c+b3=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) We have :
a2 + b2 + c2 = ab + bc + ac
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)
b) We have :
a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0
(a2 - 2a + 1) + (b2 + 2.2b + 4) + (4c2 - 4c + 1) = 0
(a - 1)2 + (b + 2)2 + (2c - 1)2 = 0
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Ta có :
\(ac=b^2\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\\ ab=c^2\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{a}\left(2\right)\)
Từ (1) và (2) suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)
Và \(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\\ \Rightarrow a=b=c\)
Ta có :
\(\dfrac{b^{3333}}{a^{1111}.c^{2222}}=\dfrac{b^{3333}}{b^{1111}.b^{2222}}=\dfrac{b^{3333}}{b^{3333}}=1\)
Vậy \(\dfrac{b^{3333}}{a^{1111}.c^{2222}}=1\)
\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)
\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)
Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM
Cho a>0,b>0,c>0. Chứng minh \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}\sqrt{\dfrac{c}{a+b}}\ge2\)
TA Có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b+c}\)
<=>\(\frac{a+b+c}{a+b-c}=1\)
<=>\(a+b+c=a+b-c\)
<=>\(2c=0=>c=0\)
Câu 1
\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)
Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)
Câu 2:
\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)
Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24
Solution:
\(a^3+a^2c-abc+b^2c+b^3\)
\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)
\(=a^2\cdot\left(-b\right)+b^2\cdot\left(-a\right)-abc\)
\(=-ab\left(a+b+c\right)\)
\(=0\)
Ta có:
\(a^3+a^2c-abc+b^2c+b^3=\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a+b+c\right)\left(a^2-ab+b^2\right)=0\)
Vì \(a+b+c=0\) nên \(a^3+a^2c-abc+b^2c+b^3=0\)