tìm các số nguyên tố a;b;c thoả mãn a^2+c^2=abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
+ Với \(a=2\)\(\Rightarrow\)\(a+2=2+2=4\left(l\right)\)
+ Với \(a=3\)\(\Rightarrow\)\(\hept{\begin{cases}a+2=3+2=5\left(n\right)\\a+10=3+10=13\left(n\right)\\a+14=3+14=17\left(n\right)\end{cases}}\)
+ Với \(a=5\)\(\Rightarrow\)\(\hept{\begin{cases}a+2=5+2=7\left(n\right)\\a+10=5+10=15\left(l\right)\end{cases}}\)
+ Với \(a>5\)có dạng \(\hept{\begin{cases}a=6k+1\\a=6k+5\end{cases}}\)
+ Với \(a=6k+1\)\(\Rightarrow\)\(a+2=6k+1+2=6k+3=3.\left(2k+1\right)⋮3\left(l\right)\)
+ Với \(a=6k+5\)\(\Rightarrow\)\(a+10=6k+5+10=6k+15=3.\left(2k+5\right)⋮3\left(l\right)\)
Vậy \(a=3\)
giả sử 1 trong 3 số=2
=>abc chia hết cho 2
=>a;c chia hết cho 2
=>a=c=2=>b=2
với a;b;c cùng lẻ=>a^2+c^2 chia hết cho 2
mà abc ko chia hết cho 2=>vô lí
Vậy a=b=c=2