Cho a;b;c thuộc N* thỏa :A^2+b^2=c^2 Chứng tỏ a.b chia hết cho 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Cho Â= 70o và B= 110o. Khẳng định nào sau đây là sai?
A. Â là góc nhọn. B. Â và \(\widehat{B}\) bù nhau. C. Góc B là góc tù.
D. Â và \(\widehat{B}\) kề bù (vì đề bài không cho góc B trùng góc A)
D nha. Vì người ta chx cho \(\widehat{A}\) và \(\widehat{B}\) cùng nằm trên 1 mặt phẳng!


Vì hai góc A và E bù nhau
=> A+E=180
Mà 2A=3E=>\(\frac{A}{E}=\frac{3}{2}\)
Sau đó giải tổng tỉ bạn nhé!
~.~
 và Ê bù nhau nên  + Ê = 180
Mà 2Â = 3Ê => Â = 1,5Ê
Tổng số phần bằng nhau là:
1 + 1,5 = 2,5 (phần)
Số đo  là: 1800 : 2,5 x 1,5 = 1080
Số đo Ê là: 1800 - 1080 = 720
=> Â - Ê = 1080 - 720 = 360
_Kik nha!! ^ ^

Vì a >/ 0
Khi đó S= a+| a|+ a+| a|+........+ a+|a|
= ((a+|a|)+a+|a|+...... +(a+|a|)=2014a
Nếu a=0=>tổng S=0
Tich cho mink nha !!!!

ajsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssusssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

a: góc B=góc C=(180-80)/2=50 độ
b: góc A=180-2*65=50 độ

Lấy E∈AD�∈�� sao cho AE=AB��=�� mà AD=AB+AC��=��+�� nên AC=DE.��=��.
ΔABEΔ��� cân có ˆBAD=60∘���^=60∘ nên ΔABEΔ��� là tam giác đều suy ra AE=EB.��=��.
Thấy ˆBED=ˆEBA+ˆEAB=120∘���^=���^+���^=120∘ (góc ngoài tại đỉnh E� của tam giác ABE��� ) nên ˆBED=ˆBAC(=120∘)���^=���^(=120∘)
Suy ra ΔEBD=ΔABC(c.g.c)⇒ˆB1=ˆB2Δ���=ΔA��(�.�.�)⇒�1^=�2^ (hai góc tương ứng bằng nhau) và BD=BC��=�� (hai cạnh tương ứng)
Lại có ˆB1+ˆB3=60∘�1^+�3^=60∘ nên ˆB2+ˆB3=60∘.�2^+�3^=60∘.
ΔBCDΔ��� cân tại B� có ˆCBD=60∘���^=60∘ nên nó là tam giác đều.
Đây nhé!
+) Nếu a2;b2;c2 không chia hết cho 3
=> a2;b2;c2 chia 3 dều dư 1
=> a2=3k +1
b2=3m+1
c2=3n+1
=> a2+b2=3k+1+3m+1=3(k+m)+2
Mà c2 chia 3 dư 1
=> Trong 2 số a;b có ít nhất 1 số chia hết cho 3 (1)
+) Nếu a2;b2;c2 không chia hết cho 4
=> a2;b2;c2 chia 8 dư 1 hoặc 4
=> a2+b2 chia 8 dư 0;2;hoặc5
Mà c2 chia 5 dư 1;4
=> Vô lí
=> trong a và b có ít nhất 1 số chia hết cho 4 (2)
Mà (3;4)=1 (3)
Từ (1);(2) và (3)
=> a.b chia hết cho 3x4=12
=> Đpcm
Chúc em học tốt nhé
Bài làm có sử dụng các bổ đề: số chính phương chia 3 dư 0 hoặc 1. Số chính phương chia 5 dư 0, 1 hoặc 4. Số chính phương chia hết cho p (p là số nguyên tố) thì phải chia hết cho p².
~~~~~~~~~
a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3.
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí)
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3 (*)
b) - Nếu a, b cùng chẵn => ab chia hết cho 4 => abc chia hết cho 4.
- Nếu a, b cùng lẻ => a = 2t + 1; b = 2k + 1 (t; k thuộc N)
=> a² + b² = (2t +1)² + (2k + 1)² = 4t² + 4t + 4k² + 4k + 2 = 4(t² + t + k² + k) + 2 => a² + b² chia hết cho 2 nhưng không chia hết cho 4 => c² chia hết cho 2 nhưng không chia hết cho 4 (vô lí)
Vậy trường hợp a, b cùng lẻ không xảy ra.
- Nếu a lẻ, b chẵn => c lẻ. Đặt a = 2m + 1; b = 2n; c= 2p + 1. (m, n, p thuộc N).
=> a² + b² = c²
<=> (2m + 1)² + (2n)² = (2p + 1)²
<=> 4m² + 4m + 1 + 4n² = 4p² + 4p + 1
<=> n² = p² + p - m² - m
<=> n² = p(p + 1) - m(m + 1).
p(p + 1) là tích 2 số tự nhiên liên tiếp => p(p + 1) chia hết cho 2. Cmtt => m(m + 1) chia hết cho 2 => p(p + 1) - m(m + 1) chia hết cho 2 => n² chia hết cho 2 => n chia hết cho 2 => b chia hết cho 4 => abc chia hết cho 4.
- Nếu a chẵn, b lẻ. Cmtt => a chia hết cho 4 => abc chia hết cho 4.
Vậy abc chia hết cho 4 (**)
c) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5.
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4.
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí)
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí).
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5. (***)
Từ (*), (**), (***), mà 3, 4, 5 đôi một nguyên tố cùng nhau => abc chia hết cho 3.4.5 hay abc chia hết cho 60. (đpcm).
~~~~~~