Cho a;b;c thỏa mãn: \(a+b+c=\frac{3}{2}\)
Chứng minh rằng: \(a^2+b^2+c^2\ge\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Bạn thử chứng minh kiểu này đi :
\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{3}\)
Mình chứng minh theo cách trên :3
\(\frac{a^2+b^2+c^2}{3}-\left(\frac{a+b+c}{3}\right)^2=\frac{a^2+b^2+c^2}{3}-\frac{\left(a+b+c\right)^2}{9}\)
\(=\frac{1}{9}\left[3\left(a^2+b^2+c^2\right)-\left(a+b+c\right)^2\right]\)
\(=\frac{1}{9}\left[2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\right]\)
\(=\frac{1}{9}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+c^2\right)\right]\)
\(=\frac{1}{9}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)