K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2021

f(0) = 1

\(\Rightarrow\) a.02 + b.0 + c = 1 

\(\Rightarrow\) c = 1

Vậy hệ số a = 0; b = 0; c = 1

f(1) = 2

\(\Rightarrow\) a.12 + b.1 + c = 2

\(\Rightarrow\) a + b + c = 2

Vậy hệ số a = 1; b = 1; c = 1

f(2) = 4

\(\Rightarrow\) a.22 + b.2 + c = 4

\(\Rightarrow\) 4a + 2b + c = 4

Vậy hệ số a = 4; b = 2; c = 1

Chúc bn học tốt! (chắc vậy :D)

 

4 tháng 2 2021

\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)

\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)

Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)

NV
23 tháng 4 2021

\(f'\left(x\right)=2ax+b\)

\(f\left(x\right)+\left(x-1\right)f'\left(x\right)=ax^2+bx+c+\left(x-1\right)\left(2ax+b\right)\)

\(=3ax^2+\left(2b-2a\right)x+c-b\)

Yêu cầu bài toán thỏa mãn khi: \(\left\{{}\begin{matrix}3a=3\\2b-2a=0\\c-b=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c=1\)

13 tháng 12 2019

Ta có: f(0) = a.02 + b.0 + c = 2

=> c = 2

  f(1) = a.12 + b.1 + c  = 1

=> a + b + c = 1 => a + b = 1 - c = 1 - 2 = -1 (1)

f(-2) = a.(-2)2 + b.(-2) + c = 2

=> 4a - 2b = 2 - c =  2 - 2 = 0

=> 2a - b = 0 (2)

Từ (1) và (2) cộng vế theo vế:

(a + b) + (2a - b) = -1

=> 3a = -1

=> a = -1/3

=> b = -1 - a = -1 + 1/3 = -2/3

Vậy ....

NV
25 tháng 2 2021

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

a: f(1)=1

=>\(a\cdot1^2+b\cdot1+1=1\)

=>a+b=0

f(-1)=3

=>\(a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+1=3\)

=>a-b=2

mà a+b=0

nên \(a=\dfrac{2+0}{2}=1;b=2-1=1\)

b: a=1 và b=1 nên \(f\left(x\right)=x^2+x+1\)

\(\Leftrightarrow\dfrac{n}{f\left(n\right)}=\dfrac{n}{n^2+n+1}\)

Gọi d=ƯCLN(n^2+n+1;n)

=>\(\left\{{}\begin{matrix}n^2+n+1⋮d\\n⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}n^2+n+1⋮d\\n\left(n+1\right)⋮d\end{matrix}\right.\)

=>\(\left(n^2+n+1\right)-n\left(n+1\right)⋮d\)

=>\(1⋮d\)

=>d=1

=>ƯCLN(n^2+n+1;n)=1

=>\(\dfrac{n}{f\left(n\right)}=\dfrac{n}{n^2+n+1}\) là phân số tối giản

NV
8 tháng 3 2021

\(f\left(-1\right)=\lim\limits_{x\rightarrow-1^-}f\left(x\right)=\lim\limits_{x\rightarrow-1^-}\left(2-ax\right)=2+a\)

\(\lim\limits_{x\rightarrow-1^+}f\left(x\right)=\lim\limits_{x\rightarrow-1^+}\left(x^2-bx+2\right)=3+b\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\left(4x+a\right)=4+a\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(x^2-bx+2\right)=3-b\)

Hàm liên tục trên R khi và chỉ khi:

\(\left\{{}\begin{matrix}2+a=3+b\\4+a=3-b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\)