K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2016

Câu 2 nè:

Ta có:2006 = 2.17.59

Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006

Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.

Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59

suy ra n(n+1)...(n+9) chia hết cho 2006

* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.

- Đặt S = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}\)

\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{58}=\frac{A}{B}\)(trong đó B ko chia hết 59)

\(\Rightarrow S=\frac{A}{B}+\frac{1}{59}=\frac{\left(59A+B\right)}{59B}=\frac{p}{q}\)

hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)

Do B ko chia hết 59 suy ra q chia hết 59.

- Đặt \(\frac{1}{50}+\frac{1}{52}+...+\frac{1}{58}=\frac{C}{D}\) ta cũng có D ko chia hết cho 17

Chứng minh tương tự suy ra q chia hết cho 59, 17, 2

=>đpcm

22 tháng 5 2016

nếu đề có thêm điều kiện n nhỏ nhất thì làm như vậy còn ko thì chỉ chép đến chỗ dấu       "'*"  thui

AH
Akai Haruma
Giáo viên
23 tháng 10 2024

Lời giải:

a. Giả sử $a,b$ đều không chia hết cho 3.

Ta biết 1 scp khi chia 3 dư 0 hoặc 1. Mà $a,b$ không chia hết cho 3 nên $a^2, b^2$ chia 3 đều dư 1.

$\Rightarrow c^2=a^2+b^2$ chia 3 dư 2 (vô lý vì $c^2$ là scp mà scp khi chia 3 chỉ dư 0 hoặc 1)

Do đó điều giả sử là sai. Tức là trong 2 số $a,b$ có ít nhất 1 số chia hết cho 3.

b.

Vì trong 2 số $a,b$ có ít nhất 1 số chia hết cho 3 nên $ab\vdots 3$ (1)

Lại có:

Nếu $a,b$ đều lẻ thì $a^2\equiv 1\pmod 4, b^2\equiv 1\pmod 4$

$\Rightarrow c^2=a^2+b^2\equiv 2\pmod 4$ (vô lý vì scp khi chia 4 chỉ dư 0 hoặc 1)

Nếu $a,b$ có 1 số chẵn, 1 số lẻ. Không mất tổng quát giả sử $a$ chẵn, $b$ lẻ.

$\Rightarrow a^2+b^2=c^2$ lẻ nên $c$ lẻ.

Ta có: $a^2=c^2-b^2$

Mà $c^2, b^2$ là scp lẻ nên $c^2\equiv 1\pmod 8; b^2\equiv 1\pmod 8$

$\Rightarrow a^2\equiv 1-1\equiv 0\pmod 8$

$\Rightarrow a\vdots 4$

$\Rightarrow ab\vdots 4$

Nếu $a$ chẵn, $b$ chẵn thì hiển nhiên $ab\vdots 4$

Vậy tóm lại $ab\vdots 4$ (2)

Từ (1); (2) $\Rightarrow ab\vdots 12$ 

Ta có đpcm.

21 tháng 2 2018

a) a) Chia hết cho 2 mà không chia hết cho 3?

Các số chia hết cho 2 là: 2; 4; 6; …; 100

Số các số chia hết cho 2 là: (100 - 2) : 2 + 1 = 50 số

Các số chia hết cho 2 và 3 là: 6; 12; 18; 24; …; 96

Số các số chia hết cho cả 2 và 3 là: (96 - 6) : 6 + 1 = 16 số

Vậy từ 1 đến 100 có  số chia hết cho 2 mà không chia hết cho 3.

b)    Chia hết cho ít nhất một trong hai số 2 và 3?

Các số chia hết cho 3 là: 3; 6; 9; 12; 15; …; 99

Số các số chia hết cho 3 là: (99 - 3) : 3 + 1 = 33 số

Vậy các số chia cho ít nhất một trong hai số 2 và 3 là: 50 + 33 – 16 = 67 số.

c)     Không chia hết cho 2 và không chia hết cho 3?

Các số không chia hết cho 2 và 3 là: 100 – 67 = 33 số.