Cho b² =ac;c² =bd .Chứng minh rằng a³+b³-c³/b³+c³-d³ =(a+b-c/b+c-d)³ giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\frac{{AB'}}{{AB}} = \frac{2}{6} = \frac{1}{3}\) và \(\frac{{AC'}}{{AC}} = \frac{5}{{15}} = \frac{1}{3}\).
b) Vì \(B'E//BC\) và\(B'E\) cắt \(AC\) tại \(E\) nên theo định lí Thales ta có:
\(\frac{{AB'}}{{AB}} = \frac{{AE}}{{AC}} \Rightarrow \frac{2}{6} = \frac{{AE}}{{15}} \Rightarrow AE = \frac{{2.15}}{6} = 5cm\)
c) Ta có: \(AE = AC' = 5cm\).
d) Điểm \(E \equiv C'\) và đường thẳng \(B'C' \equiv B'E\).
Bài 2:
a: Gọi I là trung điểm của MC
Ta có: \(MI=IC=\dfrac{MC}{2}\)
\(AM=\dfrac{MC}{2}\)
Do đó: AM=MI=IC
=>AM=MI
=>M là trung điểm của AI
Xét ΔBMC có
D,I lần lượt là trung điểm của CB,CM
=>DI là đường trung bình của ΔBMC
=>DI//BM và \(DI=\dfrac{BM}{2}\)
DI//BM
O\(\in\)BM
Do đó: DI//OM
Xét ΔADI có
M là trung điểm của AI
MO//DI
Do đó: O là trung điểm của AD
b: Xét ΔADI có O,M lần lượt là trung điểm của AD,AI
=>OM là đường trung bình của ΔADI
=>\(OM=\dfrac{1}{2}DI=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BM=\dfrac{1}{4}BM\)
Bài 1:
a: \(\dfrac{AB'}{AB}=\dfrac{AC'}{AC}\)
=>\(\dfrac{AB}{AB'}=\dfrac{AC}{AC'}\)
=>\(\dfrac{AB-AB'}{AB'}=\dfrac{AC-AC'}{AC'}\)
=>\(\dfrac{BB'}{AB'}=\dfrac{CC'}{AC'}\)
=>\(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)
b: Ta có: \(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)
=>\(\dfrac{AB'+BB'}{BB'}=\dfrac{AC'+CC'}{CC'}\)
=>\(\dfrac{AB}{BB'}=\dfrac{AC}{CC'}\)
=>\(\dfrac{BB'}{AB}=\dfrac{CC'}{AC}\)
Trên đoạn thẳng AC, điểm B nằm giữa hai điểm A và C vì AB < AC ( 20 cm < 10 cm ) ( 1 )
Ta có : AB + BC = AC
10 + BC = 20 ( cm )
=> BC = 10 ( cm )
Vậy AB = BC ( = 10 cm ) ( 2 )
Từ ( 1 ) và ( 2 ) ta chứng minh được B là trung điểm của đoạn thẳng AC
Trên tia Ax có AB=3 cm < AC=6 cm vậy B nằm giữa A và C
Ta có : AC = AB + BC
6 = 3 + BC
---> BC = 6-3 = 3 cm
B là trung điểm của A và C vì B nằm giữa A,C và AB=BC=3cm
Ta có : \(\dfrac{AB}{AC}=\dfrac{1}{4}\Rightarrow\dfrac{AB}{60}=\dfrac{1}{4}\Rightarrow AB=\dfrac{60}{4}=15\)
\(b^2=ca\Rightarrow\dfrac{b}{c}=\dfrac{a}{b}\) ; \(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\).
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)
\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\)
Áp dụng như trên ta được:
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}\)
\(\Rightarrow\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\dfrac{a^3+b^3-c^3}{b^3+d^3-d^3}\)
(tất nhiên để áp dụng như trên thì a,b,c,d phải khác 0).