\(Cho\)\(a;b;c>0\)và \(a+b+c=1.\)Tìm GTNN của \(P=\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: \(\Leftrightarrow x+2\in\left\{3;9\right\}\)
hay \(x\in\left\{1;7\right\}\)
a) (x - 140) : 7 = 33 - 23 . 3
(x - 140) : 7 = 27 - 8 . 3 = 27 - 24 = 3
x - 140 = 3 x 7 = 21
x = 21 + 140 = 161
b) x3 . x2 = 28 : 23
x5 = 25
=> x = 2
c) (x + 2) . ( x - 4) = 0
x = -2 hoặc 4
d) 3x-3 - 32 = 2 . 32 =
3x-3 - 9 = 2 . 9 = 18
3x-3 = 18 + 9 = 27
3x-3 = 33
=> x - 3 = 3
x = 3 + 3 = 6
\(1,\\ a,X=\left\{3;4\right\};\left\{2;3;4\right\};\left\{1;2;3;4\right\}\\ b,X=\left\{2;4\right\}\\ X=\left\{2\right\}\\ X=\left\{4\right\}\\ X=\varnothing\)
\(2,\\ a,A=\left\{-3;-2;0;1;2;3;4\right\}\\ B=\left\{0;1;2;3;4;6;9;10\right\}\\ b,A=\left\{1;2;3;4;5\right\}\\ B=\left\{1;2;3;6;9\right\}\)
\(a+b=132\)\(\left(1\right)\)
\(a-b=4\) \(\left(2\right)\)
lấy \(\left(1\right)-\left(2\right)\)ta có
\(a+b-a+b=132-4\)
<=> \(2b=128\)
<=> \(b=64\)
=> \(a=4+b=4+64=68\)
\(a+2⋮a-1\)
\(=>\left(a-1\right)+3⋮a-1\)
\(\)Vì \(a-1⋮a-1\) mà \(\left(a-1\right)+3⋮a-1\)
\(=>3⋮a-1\)
\(=>a\in\text{Ư}\left(3\right)=\left\{-3;-1;1;3\right\}\)
co a+2=a-1+3
de a+2 chia het cho a-1 thi 3 chia het cho a-1
=> a-1 thuoc uoc cua 3
ma U(3)∈{-1;1;-3;3}
ta co bang sau
a-1 | -1 | 1 | -3 | 3 |
a | 0 | 2 | -2 | 4 |
vay...
anh nên lên học 24h để được giả đáp tốt hơn !!