Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) cắt ba trục tọa độ lần lượt là A(a;0;0), B(0;b;0), C(0;0;c) với a b c ≠ 0 thỏa mãn 2 a + b = a b 2 c + 1 - 1 b . Khoảng cách lớn nhất từ O đến mặt phẳng (P) là:
A. 7
B. 17
C. 3
D. 1 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Ta có A M ⊥ B C ⊥ O A ⇒ B C ⊥ O A M ⇒ B C ⊥ O M
Tương tự ta cũng có O M ⊥ A C ⇒ O M ⊥ P ⇒ P (P) nhận O M ¯ = 3 ; 2 ; 1 là vecto pháp tuyến.
Trong các đáp án, chọn đáp án mặt phẳng có vecto pháp tuyến có cùng giá với O M ¯ và không chứa điểm M thì thỏa.
Chọn A
Gọi A(a;0;0);B(0;b;0);C(0;0;c)
Phương trình mặt phẳng (P) có dạng:
Vì M là trực tâm của tam giác ABC nên:
Khi đó phương trình (P): 3x+2y+z-14=0.
Vậy mặt phẳng song song với (P) là: 3x+2y+z+14=0.
Đáp án A.
Mặt cầu (S) có tâm O ( 0 ; 4 ; 0 ) và bán kính R = 5 .Điểm A ∈ O y → A ( 0 ; b ; 0 ) . Khi đó ba mặt phẳng theo giả thiết đi qua A và có phương trình tổng quát lần lượt là α 1 : x = 0 , α 2 : y - b = 0 và α 3 : z = 0 .
Nhận thấy d I ; α 1 = d I ; α 2 = d I ; α 3 = 0 nên mặt cầu (S) cắt các mặt phẳng α 1 , α 3 theo giao tuyến là đường tròn lớn có tâm I, bán kính R = 5 . Tổng diện tích của hai hình tròn đó là S 1 + S 3 = 2 πR 2 = 10 π .
Suy ra mặt cầu (S) cắt α 2 theo giao tuyến là một đường tròn có diện tích là S 3 = 11 π - S 1 + S 2 = 11 π - 10 π = π . Bán kính đường tròn này là r = S 3 π = 1 .
→ d I , α 3 = R 2 - r 2 = 2 = 4 - b ⇔ b = 2 b = 6 . Vậy A 0 ; 2 ; 0 A ( 0 ; 6 ; 0 ) .
Đáp án A
Phương trình theo đoạn chắn của mặt phẳng α là x 2 + y 3 + z 1 = 1