K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

+) Mô tả tập hợp D = {các hình vuông}

+) Mô tả tập hợp C = {các hình bình hành có hai đường chéo vuông góc} = {Các hình thoi}.

Thật vậy,

Xét tứ giác ABCD, là hình hình hành có hai đường chéo vuông góc.

Gọi \(AC \cap BD = O\) thì O là trung điểm của AC và BD.

Ta có: AO vừa là trung tuyến vừa là đường cao.

\( \Rightarrow \Delta ABD\) cân tại A.

\( \Rightarrow AB = AD\).

Tương tự ta cũng có: \(CB = CD\).

Mà \(AB = CD;\;AD = BC\).

Do đó: \(AB = CD = \;AD = BC\) hay tứ giác ABCD là hình thoi.

a) Vì nhiều hình thoi (các hình thoi không có góc nào vuông) thì không phải là hình vuông, nên \(C\not{ \subset }D\).

Vậy mệnh đề “\(C \subset D\)” sai.

b) Vì mỗi hình vuông cũng là một hình thoi (hình thoi đặc biệt: có một góc vuông), nên các phần tử của D cũng là phần tử của C. Hay \(C \supset D\)
Do đó mệnh đề “\(C \supset D\)” đúng.

c) Vì \(\left\{ \begin{array}{l}C \subset D\\C \supset D\end{array} \right.\;\; \Rightarrow C \ne D\)

Vậy mệnh đề “\(C = D\)” sai.