Quan sát Hình 15 và giải thích vì sao:
a) Hai góc xOy và yOz là hai góc kề bù;
b) Hai góc yOz và zOt là hai góc kề bù;
c) \(\widehat {xOy} + \widehat {yOz} = \widehat {yOz} + \widehat {zOt}\) và \(\widehat {xOy} = \widehat {zOt}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Có : yOz + xOy = 180 độ
=> xOy = 180 độ - yOz = 180 độ - 110 độ = 70 độ
Tk mk nha
có góc xOy+ góc yOz = 180 độ ( 2 góc kề bù)
mà góc xOy = 30 độ (gt)
=> góc yOz=180 độ - 30 độ = 150 độ
Có góc zOt + góc tOy = góc yOz
mà góc yOz = 150 độ (cmt)
góc zOt= 60 độ (gt)
=> 60 độ + góc tOy= 150 độ
=> góc tOy = 150độ - 60 độ = 90 độ
=> Ot vuông góc vs Oy
vậy đường thẳng chứa tia Ot và đường thẳng chứa tia Oy vuông góc vs nhau
Hình cậu tự vẽ
a) Ta có \(\widehat{xOy}\) và \(\widehat{yOz}\) là 2 góc kề bù (theo đề)
\(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^0\)
Hay \(50^0+\widehat{yOz}=180^0\)
\(\Rightarrow\widehat{yOz}=130^0\)
b) Góc mOn ..... bn tự lm ik
Ta có: Om là tia phân giác của \(\widehat{xOy}\) (theo đề)
\(\Rightarrow\)\(\widehat{xOm}=\widehat{yOm}=\frac{\widehat{xOy}}{2}=\frac{50^0}{2}=25^0\)
Lại có : On là tia phân giác của \(\widehat{yOz}\) (theo đề)
\(\Rightarrow\)\(\widehat{yOn}=\widehat{zOn}=\frac{\widehat{yOz}}{2}=\frac{130^0}{2}=65^0\)
Ta lại có: \(\widehat{mOy} + \widehat{nOy} = 25^0 + 65^0 = 90^0\)
Do đó 2 góc mOy và nOy phụ nhau.
x O z y m n 58 32 64 116
góc xOy = xOz - yOz
vì xOy và yOz là 2 góc kề bù nên có tổn là 180*
Nên
xOy = xOz - yOz
xOy = 180 - 64
xOy = 116
góc mOy = mOx = xOy : 2 (vì Om là tia phân giác của góc xOy)
=> mOy = mOx = 116 : 2 = 58
góc yOn = nOz = yOz : 2 (vì On là tia phân giác của góc yOz)
=> yOn = nOz = 64 : 2 = 32
chứng minh Om vuông góc On
ta có :
mOy + yOn = mOn
58 + 32 = 90
=> Om vuông góc On
Ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\) ( 2 góc kề bù) 1
\(\widehat{xOz}+\widehat{zOt}=180^0\) ( 2 góc kề bù) 2
Từ 1,2 \(=>\widehat{xOy}+\widehat{yOz}=\widehat{xOz}+\widehat{zOt}\)
\(=>\widehat{xOy}=\widehat{zOt}\)
Ta lại có: \(\widehat{xOt}+\widehat{zOt}=180^0\) ( 2 góc kề bù ) 3
Từ 1,3 \(=>\widehat{xOy}+\widehat{yOz}=\widehat{xOt}+\widehat{zOt}\)
mà \(\widehat{xOy}=\widehat{zOt}\)
\(=>\widehat{yOz}=\widehat{xOt}\)
a) Cách 1: Vì 2 góc có chung gốc O, chung cạnh Oy, 2 cạnh còn lại là Ox và Oz nằm về hai phía đối với đường thẳng chứa tia Oy nên hai góc xOy và yOz là hai góc kề nhau. Hơn nữa, hai góc xOy và yOz có tổng bằng góc xOz =180 độ nên hai góc xOy và yOz là hai góc bù nhau.
Vậy hai góc xOy và yOz là hai góc kề bù
Cách 2: Vì 2 góc có chung gốc O, chung cạnh Oy, 2 cạnh còn lại là Ox và Oz là hai tia đối nhau nên hai góc xOy và yOz là hai góc kề bù.
b) Cách 1: Vì 2 góc có chung gốc O, chung cạnh Oz, 2 cạnh còn lại là Oy và Ot nằm về hai phía đối với đường thẳng chứa tia Oz nên hai góc yOz và zOt là hai góc kề nhau. Hơn nữa, hai góc yOz và zOt có tổng bằng góc xOz =180 độ nên hai góc yOz và zOt là hai góc bù nhau.
Vậy hai góc yOz và zOt là hai góc kề bù
Cách 2: Vì 2 góc có chung gốc O, chung cạnh Oz, 2 cạnh còn lại là Oy và Ot là hai tia đối nhau nên hai góc yOz và zOt là hai góc kề bù.
c) Do
\(\begin{array}{l}\widehat {xOy} + \widehat {yOz} = \widehat {xOz} = 180^\circ ;\\\widehat {yOz} + \widehat {zOt} = \widehat {yOt} = 180^\circ \end{array}\)
Vậy \(\widehat {xOy} + \widehat {yOz} = \widehat {yOz} + \widehat {zOt}\)
\( \Rightarrow \widehat {xOy} = \widehat {zOt}\)
Chú ý: Ta có thể dùng dấu hiệu sau: 2 góc kề bù khi có chung đỉnh, chung một cạnh, 2 cạnh còn lại là 2 tia đối nhau.