K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2015

nhận xét: \(b=\frac{1}{a}\) => S = \(a^7+\frac{1}{a^7}\)

Đặt u = \(a+\frac{1}{a}\)

Ta có: \(a^2+\frac{1}{a^2}=\left(a+\frac{1}{a}\right)^2-2=u^2-2\)

\(a^3+\frac{1}{a^3}=\left(a+\frac{1}{a}\right)^3-3\left(a+\frac{1}{a}\right)=u^3-3u\)

\(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=a^5+\frac{1}{a}+a+\frac{1}{a^5}=\left(a^5+\frac{1}{a^5}\right)+\left(a+\frac{1}{a}\right)\)

=> \(a^5+\frac{1}{a^5}=\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)-\left(a+\frac{1}{a}\right)\)= (u2 - 2)(u3 - 3u) - u = u5- 5u3 + 5u

+) \(\left(a^2+\frac{1}{a^2}\right)\left(a^5+\frac{1}{a^5}\right)=a^7+\frac{1}{a^3}+a^3+\frac{1}{a^7}=\left(a^7+\frac{1}{a^7}\right)+\left(a^3+\frac{1}{a^3}\right)\)

=> S  = \(a^7+\frac{1}{a^7}=\left(u^5-5u^3+5u\right)\left(u^2-2\right)-\left(u^3-3u\right)\)

= ....

18 tháng 11 2015

Mình không gửi dc tin nhắn nữa nhé. Mọi người thông cảm. Chúc vui vẻ. ngủ ngon.

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:
a. ĐKXĐ: $a\geq 0; a\neq 1$

b.

\(P=\left[\frac{\sqrt{a}(\sqrt{a}+1)}{\sqrt{a}+1}+1\right].\left[\frac{\sqrt{a}(\sqrt{a}-1)}{\sqrt{a}-1}-1\right].\frac{\sqrt{2}(\sqrt{2}-1)}{\sqrt{2}-1}\)

\(=(\sqrt{a}+1)(\sqrt{a}-1).\sqrt{2}=\sqrt{2}(a-1)\)

c.

\(P=\sqrt{2}(\sqrt{2+\sqrt{2}}-1)=\sqrt{4+2\sqrt{2}}-\sqrt{2}\)

28 tháng 8 2021

a. ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{a}\ge0\\\sqrt{a}-1\ne0\\\sqrt{a}+1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\\sqrt{a}\ne1\\\sqrt{a}\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

b. \(P=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right).\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)

\(=\left[\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right].\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-1\right].\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)

\(=\left(\sqrt{a}+1\right).\left(\sqrt{a}-1\right).\sqrt{2}=2\left(a-1\right)=2a-2\)

 

14 tháng 9 2023

Trước tiên ta cần phải rút gọn biểu thức A trước.

Ta có : \(A\text{=}\dfrac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}}\)

\(A\text{=}\dfrac{\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\)

\(A\text{=}\dfrac{\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}}{\sqrt{x+\sqrt{2x+1}+\sqrt{x-\sqrt{2x+1}}}}\)

\(A\text{=}\dfrac{\sqrt{x-1}+1+|\sqrt{x-1}-1|}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\)

\(A\text{=}\dfrac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\left(x\ge2\right)\)

\(A\text{=}\dfrac{2\sqrt{x-1}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\)

\(A\text{=}\dfrac{2\sqrt{2\left(x-1\right)}}{\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}}\)

\(A\text{=}\dfrac{2\sqrt{2\left(x-1\right)}}{\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}}\)

\(A\text{=}\dfrac{2\sqrt{2\left(x-1\right)}}{\sqrt{2x-1}+1+\sqrt{2x-1}-1}\left(x\ge2\right)\)

\(A\text{=}\dfrac{\sqrt{2x-2}}{\sqrt{2x-1}}\)

Xét tử thức và mẫu thức của A ta thấy :

\(\sqrt{2x-2}< \sqrt{2x-1}\left(x\ge2\right)\)

\(\Rightarrow A< 1\left(đpcm\right)\)

 

27 tháng 4 2023

Với \(ab+bc+ca=1\) và a,b,c>0 ta có:

\(\left\{{}\begin{matrix}\sqrt{a^2+1}=\sqrt{\left(a+b\right)\left(c+a\right)}\\\sqrt{b^2+1}=\sqrt{\left(b+c\right)\left(a+b\right)}\\\sqrt{c^2+1}=\sqrt{\left(c+a\right)\left(b+c\right)}\end{matrix}\right.\). Do đó:

\(\dfrac{\sqrt{a^2+1}.\sqrt{b^2+1}}{\sqrt{c^2+1}}=a+b\)

Tương tự: \(\dfrac{\sqrt{b^2+1}.\sqrt{c^2+1}}{\sqrt{a^2+1}}=b+c\) ; \(\dfrac{\sqrt{c^2+1}.\sqrt{a^2+1}}{\sqrt{b^2+1}}=c+a\)

\(\Rightarrow P=2\left(a+b+c\right)\)

\(\Rightarrow P^2=4\left(a+b+c\right)^2\ge4.3\left(ab+bc+ca\right)=4.3.1=12\)

\(\Rightarrow P\ge2\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\)

Vậy \(MinP=2\sqrt{3}\)

9 tháng 2 2021

a ĐKXĐ \(a\ge0,a\ne\dfrac{1}{4},a\ne1\)

\(\Rightarrow P=1+\left(\dfrac{\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(1+\left(\dfrac{\left(-1\right)\left(2\sqrt{a}-1\right)}{\sqrt{a}-1}+\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{2\sqrt{a}-1}\)

\(1+\left(-1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{a+\sqrt{a}+1}\right)\sqrt{a}\)

\(1-\sqrt{a}+\dfrac{a\sqrt{a}+a}{a+\sqrt{a}+1}\) = \(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)+a\sqrt{a}+a}{a+\sqrt{a}+1}=\dfrac{1-a\sqrt{a}+a\sqrt{a}+a}{a+\sqrt{a}+1}=\dfrac{a+1}{a+\sqrt{a}+1}\)

b Xét hiệu \(P-\dfrac{2}{3}=\dfrac{a+1}{a+\sqrt{a}+1}-\dfrac{2}{3}=\dfrac{3a+3-2a-2\sqrt{a}-2}{a+\sqrt{a}+1}=\dfrac{a-2\sqrt{a}+1}{a+\sqrt{a}+1}=\dfrac{\left(\sqrt{a}-1\right)^2}{a+\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\) \(\Rightarrow P>\dfrac{2}{3}\) 

c Ta có \(P=\dfrac{\sqrt{6}}{\sqrt{6}+1}\Rightarrow\dfrac{a+1}{a+\sqrt{a}+1}=\dfrac{\sqrt{6}}{\sqrt{6}+1}\) \(\Rightarrow\left(a+1\right)\left(\sqrt{6}+1\right)=\sqrt{6}\left(a+\sqrt{a}+1\right)\Leftrightarrow a\sqrt{6}+a+\sqrt{6}+1=a\sqrt{6}+\sqrt{6a}+\sqrt{6}\)

\(\Leftrightarrow a-\sqrt{6a}+1=0\Leftrightarrow a-\sqrt{6a}+\dfrac{6}{4}-\dfrac{2}{4}=0\Leftrightarrow\left(\sqrt{a}-\dfrac{\sqrt{6}}{2}\right)^2=\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{a}=\dfrac{\sqrt{6}+1}{2}\\\sqrt{a}=\dfrac{1-\sqrt{6}}{2}\left(L\right)\end{matrix}\right.\) (Do \(\sqrt{a}\ge0\))  \(\Rightarrow a=\dfrac{\left(\sqrt{6}+1\right)^2}{4}=\dfrac{7+2\sqrt{6}}{4}\left(TM\right)\) 

Vậy...

NV
13 tháng 9 2021

Tham khảo:

Tính giá trị biểu thức A = \(x^2+\sqrt{x^{^4}+x+1}\) với x =\(\dfrac{1}{2}\sqrt{\sqrt{2}+\dfrac{1}{8}}-\dfrac{\sqrt{2}}{... - Hoc24

13 tháng 9 2021

\(a=\dfrac{1}{2}\sqrt{\sqrt{2}+\dfrac{1}{8}}-\dfrac{1}{8}\sqrt{2}\\ \Leftrightarrow a+\dfrac{\sqrt{2}}{8}=\dfrac{1}{2}\sqrt{\sqrt{2}+\dfrac{1}{8}}\\ \Leftrightarrow\left(a+\dfrac{\sqrt{2}}{8}\right)^2=\dfrac{1}{4}\left(\sqrt{2}+\dfrac{1}{8}\right)\\ \Leftrightarrow a^2+\dfrac{a\sqrt{2}}{4}+\dfrac{1}{32}=\dfrac{\sqrt{2}}{4}+\dfrac{1}{32}\\ \Leftrightarrow a^2=\dfrac{\sqrt{2}-a\sqrt{2}}{4}=\dfrac{\sqrt{2}\left(1-a\right)}{4}\\ \Leftrightarrow a^4=\dfrac{a^2-2a+1}{8}\\ \Leftrightarrow a^4+a^2+1=\dfrac{a^2-2a+1}{8}+a^2+1=\dfrac{9a^2-2a+9}{8}\)

\(\Leftrightarrow a^2+\sqrt{a^4+a^2+1}=a^2+\dfrac{\sqrt{9a^2-2a+9}}{2\sqrt{2}}=\dfrac{2a^2\sqrt{2}+\sqrt{9a^2-2a+9}}{2\sqrt{2}}\)

2 tháng 11 2021

Áp dụng BĐT cosi cho 2 số dương

\(1=a^2+b^2\ge2ab\Leftrightarrow ab\le\dfrac{1}{2}\)

Mà \(\left(a+b\right)^2=1+2ab\le1+2\cdot\dfrac{1}{2}=2\Leftrightarrow a+b\le\sqrt{2}\)

Áp dụng BĐT Bunhiacopski

\(\left(a\sqrt{1+b}+b\sqrt{1+a}\right)^2\le\left(a^2+b^2\right)\left(1+b+1+a\right)=2+a+b\le2+\sqrt{2}\\ \Leftrightarrow a\sqrt{1+b}+b\sqrt{1+a}\le\sqrt{2+\sqrt{2}}\)

Dấu \("="\Leftrightarrow\dfrac{a}{b}=\sqrt{\dfrac{1+b}{1+a}}\Leftrightarrow a=b=\dfrac{1}{2}\)

2 tháng 11 2021

Áp dụng BĐT Bunhicopski:

\(\left(a\sqrt{1+b}+b\sqrt{1+a}\right)\le\left(a^2+b^2\right)\left(1+b+1+a\right)=a+b+2\left(1\right)\)

Ta có: \(a^2+b^2\ge2ab\)(BĐT  Cauchy)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow\left(a+b\right)^2\le2\Rightarrow a+b\le\sqrt{2}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left(a\sqrt{1+b}+b\sqrt{1+a}\right)^2\le2+\sqrt{2}\)

\(\Rightarrow a\sqrt{1+b}+b\sqrt{1+a}\le\sqrt{2+\sqrt{2}}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\dfrac{\sqrt{2}}{2}\)

 

 

17 tháng 12 2023

a) ĐKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\\a\ne4\end{matrix}\right.\)

b) Với \(a>0;a\ne1;a\ne4\), ta có:

\(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ =\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

c)\(B\le\dfrac{1}{3}\rightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\rightarrow\dfrac{-2}{\sqrt{a}}\le0\) (đúng với mọi a thoả ĐKXĐ).

18 tháng 12 2023

a, ĐKXĐ: 

\(\left\{{}\begin{matrix}\left|a\right|>1^2\\\left|a\right|>0\\\left|a\right|>2^2\end{matrix}\right.\Leftrightarrow a>4\)

b,

 \(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ B=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left[\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)\right]}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\\ B=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

\(c,B\le\dfrac{1}{3}\\ \Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\\ \Leftrightarrow3\left(\sqrt{a}-2\right)\le3\sqrt{a}\\ \Leftrightarrow\sqrt{a}-2\le\sqrt{a}\\ \Leftrightarrow\sqrt{a}-\sqrt{a}\le2\\ \Leftrightarrow0\le2\left(luôn.đúng\right)\)

Vậy: Với a>4 thì \(B\le\dfrac{1}{3}\)