K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2019

Để tìm Max M thì ta cần c/m \(a^2+b^2\le ab+1\)

Giả sử điều cần c/m là đúng , khi đó , ta có : 

\(a^2+b^2\le ab+1\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)^2\le\left(a+b\right)\left(a^5+b^5\right)\) ( do \(a^3+b^3=a^5+b^5\))

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+a^5b+b^5a+b^6\)

\(\Leftrightarrow2a^3b^3\le a^5b+b^5a\)

\(\Leftrightarrow a^5b+b^5a-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)\ge0\) ( điều này luôn đúng với a ; b dương ) 

=> Điều giả sử là đúng 

\(\Rightarrow a^2+b^2\le ab+1\)

\(\Rightarrow M=a^2+b^2-ab\le1\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}ab=0\\a^2-b^2=0\end{cases}}\)  

\(\Leftrightarrow a=0\) hoặc \(b=0\)hoặc \(a^2=b^2\)

\(\Leftrightarrow a^2=b^2\)( a ,  b dương ) 

\(\Leftrightarrow a=b\)

Thế a = b vào b/t \(a^3+b^3=a^5+b^5\), ta có : 

\(2a^3=2a^5\)

\(\Leftrightarrow a^3=a^5\)\(\Leftrightarrow\frac{a^3}{a^5}=1\Leftrightarrow\frac{1}{a^2}=1\Leftrightarrow a=1\left(a>0\right)\)

\(\Leftrightarrow b=1\)

Vậy ...

13 tháng 1 2019

Nguyen quang trung dung , trẻ trâu như mày quê tao đầy 

1 tháng 9 2021

giúp mik với

20 tháng 10 2019

trái nghĩa với từ chắt chiu là gì

20 tháng 10 2019

trái nghĩa với từ chắt chiu là gì .

a: Ta có: \(\dfrac{x+1}{2}=\dfrac{2}{x+1}\)

\(\Leftrightarrow\left(x+1\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

b: Ta có: \(\dfrac{\left(x-2\right)^2}{7}=\dfrac{49}{\left(x-2\right)}\)

\(\Leftrightarrow x-2=7\)

hay x=9