Tìm các số tự nhiên a,b biết rằng:
\( { {a} \over b}= { {132} \over 43}\) và BCNN(a;b)= 1092
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{132}{143}=\frac{12}{13}\)nên a=12.k và b=13.k với k\(\in\) N (1)
Ta có :ƯCLN(12; 13) = 1
=> ƯCLN(12k; 13k) = k
=> BCNN(12k; 13k) = 12.13k (2)
Theo đề bài thì BCNN(a; b) = 1092 (3)
Từ (1), (2) và (3)
=>12.13k = 1092
<=> 156.k = 1092
<=>k=1092:156=7
Khi đó a = 12.7 = 84 ; b = 13.7 = 91
Vậy a = 84 và b = 91
\(\frac{a}{b}=\frac{132}{143}=\frac{12}{13}\) nên a = 12k và b = 13k với k \(\in\) N. (1)
Ta có :
ƯCLN(12; 13) = 1 \(\Rightarrow\) ƯCLN(12k; 13k) = k
\(\Rightarrow\) BCNN(12k; 13k) = 12.13k (2)
Theo đề bài thì BCNN(a; b) = 1092 (3)
Từ (1), (2) và (3) suy ra 12.13k = 1092 \(\Leftrightarrow\) 156.k = 192 \(\Leftrightarrow\) k = 7
Khi đó a = 12.7 = 84 ; b = 13.7 = 91
Vậy a = 84 và b = 91
ta rút gọn\(\frac{132}{143}=\frac{12}{13}\)
=> \(\frac{a}{b}=\frac{12}{13}=\frac{12k}{13k}\)
theo bài ra ta có :
a.b = 1092 <=> \(12k.13k=1092<=>\left(12.13\right).k=1092\)
<=> 156k = 1092
<=> k = 1092 : 156
<=> k = 7
=> \(\frac{a}{b}=\frac{12.7}{13.7}=\frac{84}{91}\)
Vậy a = 84;b = 91
Lời giải:
a.
Ta có: $ab=BCNN(a,b).ƯCLN(a,b)$
$\Rightarrow 1200=3.ƯCLN(a,b).ƯCLN(a,b)$
$\Rightarrow ƯCLN(a,b).ƯCLN(a,b)=400=20.20$
$\Rightarrow ƯCLN(a,b)=20$
Đặt $a=20x, b=20y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đđ:
$ab=20x.20y$
$\Rightarrow 1200=400xy\Rightarrow xy=3$
Kết hợp với $x,y$ nguyên tố cùng nhau $\Rightarrow (x,y)=(1,3), (3,1)$
$\Rightarrow (a,b)=(20, 60), (60,20)$
b. Đề không rõ ràng. Bạn viết lại nhé.
Bạn ơi thiếu đề bài rồi nha.
aaaaaaaaaaaa