K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2022

kẻ j??

Điểm D,E ở đâu vậy bạn?

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó:ΔEBC=ΔDCB

Suy ra: BE=CD

b: Ta có: ΔEBC=ΔDCB

nên \(\widehat{ECB}=\widehat{DBC}\)

hay ΔIBC cân tại I

Ta có: AE+EB=AB

AD+DC=AC

mà AB=AC

và EB=DC

nên AE=AD

Xét ΔABI và ΔACI có 

AB=AC

AI chung

BI=CI

Do đó: ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

c: Xét ΔABC có

BD là đường cao

CE là đường cao

BD cắt CE tại I

Do đó: I là trực tâm của ΔABC

Suy ra: AI\(\perp\)BC

mà AK\(\perp\)BC

nên A,I,K thẳng hàng

=>AK,BD,CE đồng quy

30 tháng 12 2021

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

9 tháng 3 2022

F ở đâu bạn ? 

b, Xét tam giác ABD và tam giác ACE 

^A _ chung 

AB = AC 

Vậy tam giác ABD = tam giác ACE (ch-gn) 

c, Ta có BD ; CE lần lượt là đường cao 

mà BD giao CE = O 

=> O là trực tâm tam giác ABC 

=> AO là đường cao thứ 3 trong tam giác 

mà tam giác ABC cân tại A nên AO là đường cao

đồng thời là đường phân giác ^BAC 

19 tháng 11 2016

A B C D O E

a)Xét \(\Delta ABD;\Delta ACE\) có:

Góc A chung

Góc ADB=Góc AEC (=90 độ)

AB=AC (gt)

=>\(\Delta ABD=\Delta ACE\) (cạnh huyền-góc nhọn)

=>BD=CE và AD=AE

b)Vì AB=AC và AE=AD =>AB-AE=AC-AD

=>BE=CD

xét \(\Delta\)OEB và \(\Delta\)ODC có:

góc OEB= góc ODC (=90 độ)

BE=CD

góc BOE= góc COD (đối đỉnh)

=>\(\Delta\)OEB=\(\Delta\)ODC

c)Xét \(\Delta\)AOB và \(\Delta\)AOC có;

AB=AC

OB=OC

AO cạnh chung

=>\(\Delta\)AOB=\(\Delta\)AOC (c.c.c)

=>góc OAB= góc OAC

=>AO là tia phân giác của góc BAC

19 tháng 11 2016

Ta có hình vẽ:

a/ Xét tam giác EBC và tam giác DBC có:

BC: cạnh chung

\(\widehat{E}\)=\(\widehat{D}\) = 900 (GT)

\(\widehat{B}\)=\(\widehat{C}\) (vì \(\Delta\)ABC cân có AB = AC)

Vậy tam giác EBC = tam giác DBC (g.c.g)

(trường hợp cạnh huyền góc nhọn)

=> BD = CE (2 cạnh tương ứng)

b/ Xét tam giác OEB và tam giác ODC có:

\(\widehat{E}\)=\(\widehat{D}\)=900 (GT)

BO = CO

\(\widehat{EOB}\)=\(\widehat{DOC}\) (đối đỉnh)

Vậy tam giác OEB = tam giác ODC (g.c.g)

(trường hợp cạnh huyền góc nhọn)

c/ Xét tam giác AEO và tam giác ADO có:

\(\widehat{E}\)=\(\widehat{D}\)=900 (GT)

AO: cạnh chung

\(\widehat{AOE}\)=\(\widehat{AOD}\)

Vậy tam giác AEO = tam giác ADO (g.c.g)

=> \(\widehat{EAO}\)=\(\widehat{DAO}\) (2 góc tương ứng)

=> AO là phân giác \(\widehat{A}\) (đpcm)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

=>BD=CE

b: ΔABD=ΔACE

=>\(\widehat{ABD}=\widehat{ACE}\)

=>\(\widehat{OBE}=\widehat{OCD}\)

ΔABD=ΔACE

=>AD=AE

AE+EB=AB

AD+DC=AC

mà AE=AD và AB=AC

nên EB=DC

Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC

\(\widehat{OBE}=\widehat{OCD}\)

Do đó: ΔOEB=ΔODC

c: ΔOEB=ΔODC

=>OB=OC

Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

=>\(\widehat{BAO}=\widehat{CAO}\)

=>AO là phân giác của góc BAC

d: Ta có: ΔABC cân tại A

mà AH làđường trung tuyến

nên AH là phân giác của góc BAC

mà AO là phân giác của góc BAC(cmt)

và AO,AH có điểm chung là A

nên A,O,H thẳng hàng

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: \(\widehat{OCB}=\widehat{OBC}\)

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

1 tháng 3 2022

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

ˆBADBAD^ chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: ˆOCB=ˆOBCOCB^=OBC^

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

25 tháng 11 2018

Ta có CE, BD, AH cắt nhau tại O

O là trực tâm của tam giac ABC (tính chât 3 đường trung trực tam giác) 

AH vuông góc BC                                                             (1)

Gọi I là giao điểm của AH và ED, ta có:

Tam giác AED là tam giac cân tại A (gt)

Suy ra AI vuông góc ED (AH vuông góc BC)                      (2)

Từ (1) và (2) suy ra ED//BC (đpcm)