Tìm a, b biết:
a) a . b = 180; BCNN(a;b) = 60
b) a : b = \(\frac{4}{5}\); BCNN(a;b) = 140
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho
Bài 2:
a) \(2\sqrt{125}+\dfrac{3}{2}\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\)
\(=2\sqrt{5^2\cdot5}+\dfrac{3}{2}\sqrt{4^2\cdot5}-\sqrt{6^2\cdot5}-\dfrac{2}{7}\sqrt{7^2\cdot5}\)
\(=10\sqrt{5}+\dfrac{3\cdot4}{2}\sqrt{5}-6\sqrt{5}-\dfrac{2\cdot7}{7}\sqrt{5}\)
\(=10\sqrt{5}+6\sqrt{6}-6\sqrt{5}-2\sqrt{5}\)
\(=8\sqrt{5}\)
b) \(\sqrt{11-4\sqrt{7}}-\sqrt{16+6\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}\right)^2-2\cdot2\cdot\sqrt{7}+2^2}-\sqrt{\left(\sqrt{7}\right)^2+2\cdot3\cdot\sqrt{7}+3^2}\)
\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\sqrt{\left(\sqrt{7}+3\right)^2}\)
\(=\sqrt{7}-2-\sqrt{7}-3\)
\(=-5\)
\(2a,\\ 2\sqrt{125}+\dfrac{3}{2}.\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\\ =2\sqrt{5^2.5}+\dfrac{3}{2}.\sqrt{4^2.5}-\sqrt{6^2.5}-\dfrac{2}{7}.\sqrt{7^2.5}\\ =2.5.\sqrt{5}+\dfrac{3}{2}.4.\sqrt{5}-6\sqrt{5}-\dfrac{2}{7}.7\sqrt{5}\\ =10\sqrt{5}+6\sqrt{5}-6\sqrt{5}-2\sqrt{5}=8\sqrt{5}\)
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{180}{12}=15\)
=>x=45; y=60; z=75
b:
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{3+4-5}=\dfrac{8}{2}=4\)
=>x=12; y=16; z=20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y + z}}{{3 + 4 + 5}} = \frac{{180}}{{12}} = 15\)
Vậy x = 3 . 15 = 45; y = 4 . 15 = 60; z = 5 . 15 = 75
b) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y - z}}{{3 + 4 - 5}} = \frac{8}{2} = 4\)
Vậy x = 3. 4 = 12; y = 4.4 = 16; z = 5.4 = 20
\(\left\{{}\begin{matrix}a+b=100\\a-b=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=100-b\\a-b=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=100-b\\100-b-b=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=100-b\\2b=64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=100-b\\b=32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=68\\b=32\end{matrix}\right.\)
a) ƯCLN (a,b) . BCNN ( a,b) = a . b
=> a . b = 180 : 60 = 3
Giả sử a > b
Đặt : a = 3m
b = 3n
m > n và ƯCLN (m,n) = 1
3m . 3n = 180
9 ( m.n) = 180
m . n = 20
Bạn lập bảng tìm các cặp số m,n có ƯCLN là 1 là xong
( m ,n ) = ( 5,4) ; ( 20,1)