Cho tam giác MNP có \(\widehat M = \widehat N\). Vẽ tia phân giác PK của tam giác \(MNP(K \in MN)\).
Chứng minh rằng:
a) \(\widehat {MKP} = \widehat {NKP}\);
b) \(\Delta MPK = \Delta NPK\);
c) Tam giác MNP có cân tại \(P\) không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\widehat{MIN};\widehat{MIP}\) lần lượt là góc ngoài tg MIP và NIM nên
\(\widehat{MIP}-\widehat{MIN}=\widehat{IMN}+\widehat{N}-\widehat{IMP}-\widehat{P}==\widehat{N}-\widehat{P}\left(\widehat{IMN}=\widehat{IMP}\right)\)
a)
Xét tam giác NMD và tam giác NED, có:
NM=EH(gt)
\(\widehat{MND}=\widehat{DNE}\)(do MD là phân giác MNE)
ND là cạnh chung
Suy ra: Tam giác NMD=tam giác NED (c.g.c)
==> \(\widehat{NMD}=\widehat{NED}\) (2 góc tương ứng)
b) Có: +) MN vuông góc MP
+) EH vuông góc MP
==> MN // EH
c) Có : MN // EH
==> MNP = HEP (2 góc đồng vị)
a)
Trong tam giác DEG có góc E là góc tù (góc > 90°). Mà DG là cạnh đối diện với góc E nên DG là cạnh lớn nhất trong tam giác.
Vậy DE < DG.
b)
Tam giác MNP có \(\widehat M = 56^\circ \), \(\widehat N = 65^\circ \). Mà tổng ba góc trong một tam giác bằng 180°. Vậy \(\widehat P = 180^\circ - 56^\circ - 65^\circ = 59^\circ \).
Ta thấy: \(\widehat M < \widehat P < \widehat N\). Hay cạnh nhỏ nhất của tam giác MNP là NP (đối diện với góc M), cạnh lớn nhất của tam giác MNP là MP (đối diện với góc N).
a)
Xét tam giác MPK có:
\(\widehat {PKM} + \widehat {MPK} + \widehat {KMP} = {180^o}\)
Xét tam giác NPK có:
\(\widehat {PKN} + \widehat {NPK} + \widehat {KNP} = {180^o}\)
Mà \(\widehat {KMP} = \widehat {KNP};\,\,\,\widehat {MPK} = \widehat {NPK}\)
Suy ra \(\widehat {MKP} = \widehat {NKP}\).
b)Xét hai tam giác MPK và NPK có:
\(\widehat {MPK} = \widehat {NPK}\)
PK chung
\(\widehat {MKP} = \widehat {NKP}\)
=>\(\Delta MPK = \Delta NPK\)(g.c.g)
c) Do \(\Delta MPK = \Delta NPK\) nên MP=NP (2 cạnh tương ứng)
=> Tam giác MNP cân tại P.