Cho a, b, c > 0; abc ≥ 8. Tìm GTNN của:
\(P=\frac{a^3+b^3+c^3}{a^2+b^2+c^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) sai, sửa lại: -4,5 ∉ Z
b) đúng
c) sai, sửa lại -3 ∉ N
d) đúng
Câu10: m là số tự nhiên nhỏ nhất khác 0 mà m đều chia hết cho cả a và b thì:
A. m ϵ BC(a;b).
B. m ϵ UC(a;b).
C. m = UCLN(a;b).
D. m = BCNN(a;b)
P = a(b - a) - b(a + c) - bc
= ab - a² - ab - bc - bc
= -a² - 2bc
= -(a² + 2bc)
Do a, b, c ∈ ℕ và a ≠ 0
⇒ a² + 2bc > 0
⇒ -(a² + 2bc) < 0
Vậy P luôn âm
\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)
\(P_{min}=1\) khi \(a=b=c=1\)
\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)
Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)
\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)
\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)
\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)
Lời giải:
$f(x)=ax^2+bx+c$ liên tục trên $[0; \frac{1}{3}]$
$f(0)=c$
$f(\frac{1}{3})=\frac{1}{9}a+\frac{1}{3}b+c$
$\Rightarrow 18f(\frac{1}{3})=2a+6b+18c$
$\Rightarrow f(0)+18f(\frac{1}{3})=2a+6b+19c=0$
$\Rightarrow f(0)=-18f(\frac{1}{3})$
$\Rightarrow f(0).f(\frac{1}{3})=-18f(\frac{1}{3})^2\leq 0$
$\Rightarrow$ pt luôn có nghiệm trong $[0; \frac{1}{3}]$ (đpcm)