Cho a,b,c >0; abc=1.CMR:
\(\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right)\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có (a+b)(b+c)(c+a)+abc
=(a+b)(bc+ab+c^2+ca)+abc
=(a+b)(bc+ab+ca+c^2)+abc
=(a+b).c^2+abc
=ac^2+bc^2+abc
=c(ac+bc+ab)=c.0=0 (đpcm)
Ta có: AB → = (−a; b; 0) và AC → = (−a; 0; c)
Vì AB → . AC → = a 2 > 0 nên góc ∠ BAC là góc nhọn.
Lập luận tương tự ta chứng minh được các góc ∠ B và ∠ C cũng là góc nhọn.
*bạn kí tự vecto vào bài nhé
Gọi trọng tâm tam giác ABC là G
Ta có \(2GB+3GC=2\left(GM+MB\right)+3\left(GM+MC\right)=5GM+2MB+3MC=5GM\)
tượng tự \(2GC+3GA=5GN\)
\(2GA+3GB=5GP\)
cộng vế với vế ta được
\(GA+GB+BC=GN+GM+GP\Leftrightarrow GN+GM+GP=0\)
Vậy G là trọng tâm tam giác MNP
Cho (a2−bc)(b−abc)=(b2−ac)(a−abc);abc≠0;a≠b(a2−bc)(b−abc)=(b2−ac)(a−abc);abc≠0;a≠b
CMR:1a+1b+1c=a+b+c