Tính : \(\left(a-b\right)^{2015}\) biết a + b = 9 ; ab = 20 và a < b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ gt , ta có :
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
\(\Rightarrow0=\left(a+b\right)\left(ca+cb+c^2\right)-\left[-\left(a+b\right)ab\right]=\left(a+b\right)\left(ca+cb+c^2+ab\right)=\left(a+b\right)\left(c+a\right)\left(c+b\right)\)
\(\Rightarrow a+b=0\) hoặc \(c+a=0\) . Gỉa sử \(a=-b\) thì \(a^{15}=-b^{15}\) nên \(a^{15}+b^{15}=0\)
\(\Rightarrow N=0\)
Đặt a-b+2015=k ( k là số nguyên)
mà a-b+2015 , b-c+2015,c-a+2015 là ba số nguyên liên tiếp => b-c+2015=k+1
c-a+2015=k+2
Có a-b+2015+b-c+2015+c-a+2015=k+k+1+k+2
<=>6045=3k+3
<=> 6042=3k
<=> k=2014
=> a-b+2015=2014 , b-c+2015=2014+1=2015 , c-a+2015=2014+2=2016
=> ba số nguyên liên tiếp đó là 2014,2015,2016 <=> b=c=a+1 và a,b,c tự nhiên
P/s: Chẳng biết có đúng không
a ) Ta thấy :
2^4 = 16
4^2 = 16
16 - 16 = 0
Số nào nhân với 0 cũng bằng 0 nên giá trị biểu thức trên là 0
b ) ( 7^2015 + 7^2014 ) : 7^2013
= 7^2015 : 7^2013 + 7^2014 : 7^2013
= 7^2 + 7
= 49 + 7
= 56
c ) ( 3 . 4 . 2^16 ) ^ 2 / 11 . 2^13 . 4^11 - 16^9
Tính phần mẫu trước .
11 . 2^13 . 4^11 - 16^9 = 11 . 2^13 . ( 2^2 ) ^11 - (2^4)^9 = 11 . 2^13 . 2^22 - 2^36 = 11. 2^35 - 2^36 = 11 . 2^35 - 2^35 . 2 = ( 11 - 2 ) . 2^35 = 9 . 2^35
Phần tử :
( 3 . 4 . 2^16 ) ^ 2 = 3^2 . ( 2^2 ) ^ 2 . ( 2^16 ) ^ 2 = 3 ^ 2 . 2^4 . 2^32 = 9 . 2^36
Vì các thừa số của mẫu và tử đều giống nhau nên có kết quả là 1 .
Gọi \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\left(1\right)\)
Thay (1) vào M ta có :
M=4(2014k-2015k)(2015k-2016k)-(2016k-2014k)2
=>M=4.-k.-k-4k2
=>M=4k2-4k2=0
Vậy M = 0
Có \(\left(a+\sqrt{a^2+2015}\right)\left(\sqrt{a^2+2015}-a\right)=a^2+2015-a^2=2015\)
\(\Rightarrow\sqrt{a^2+2015}-a=b+\sqrt{b^2+2015}\)
\(\Rightarrow a+b=\sqrt{a^2+2015}-\sqrt{b^2+2015}\)
Tương tự \(a+b=\sqrt{b^2+2015}-\sqrt{a^2+2015}\)
Cộng 2 vế vào ta được \(2\left(a+b\right)=0\)
\(\Leftrightarrow a=-b\)
Ta có: \(a^{2015}+b^{2015}=-b^{2015}+b^{2015}=0\)
a)Vì |x−2015|= 1/2 nên x-2015=-1/2 hoặc x-2015=1/2
Nếu x-2015=-1/2 thì
x=2015+(-1)/2
x=4029/2
Nếu x-2015=1/2 thì
x=2015+1/2
x=4031/2
Vậy x=4029/2
hoặc x=4031/2
b)
Nếu x>2016 thì |x−2015|=x-2015 ,|x−2016|=x-2016
Khi đó: |x−2015|+|x−2016|=2017
=>x-2015+x-2016=2017
=>2x-4031=2017
=>2x=6048=>x=3024(thỏa mãn x>2016)
Nếu 2015<x<2016 thì |x−2015|=x-2015,
|x−2016|=2016-x. khi đó
|x−2015|+|x−2016|=2017
=>x-2015+2016-x=2017
=>1=2017(vô lý loại)
Nếu x>2015 thì |x−2015|=2015-x,|x−2016|=2016-x
Khi đó:
|x−2015|+|x−2016|=2017
=>2015-x+2016-x=2017
=>4031-2x=2017
=>2x=2014=>x=1007(thỏa mãn x<2015)
Vậy x=1007 hoặc x=3024
ta có: a+b = 9
=> (a+b)2 = 81
a2 + 2ab + b2 = 81
=> a2 - 2ab + b2 + 4ab = 81
(a-b)2 + 4ab = 81
(a-b)2 + 80= 81
(a-b)2 = 1 = 12 = (-1)2
=> a-b = 1 hoặc a-b = -1
=> (a-b)2015 = 12015 = 1
(a-b)2015 = (-1)2015 = -1
KL:...
a + b = 9 => ( a + b )2 = 81
=> a2 + 2ab + b2 = 81
=> a2 + 2.20 + b2 = 81
=> a2 + b2 + 40 = 81
=> a2 + b2 = 41
Xét ( a - b )2 = a2 - 2ab + b2 = ( a2 + b2 ) - 2 . 20 = 41 - 40 = 1
=> ( a - b )2 = 1
=> a - b = { 1; -1 }
mà a > b => a - b = 1
=> ( a - b )2015 = 12015 = 1
Vậy,......