Trên nửa mặt phẳng bờ chứa tia Oa vẽ các tia Ob,Oc sao cho góc aOb=40o;aOc=110o.
a)Tính góc bOc
b)Gọi Oa' là tia đối của tia Oa. Tính góc a'Ob;a'Oc
c)Chứng minh rằng Oc là phân giác của góc a'Ob
Làm ơn hãy trả lời câu hỏi này giúp mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : aOb < aOc ( \(40^o< 140^o\))
⇒ Ob nằm giữa Oa và Oc
⇒ aOb + bOc = aOc
⇒ bOc = aOc - aOb = \(140^o-40^o=100^o\)
b) Có : Od là tia đối của Oc ⇒ Ob nằm giữa Oc và Od
⇒ dOb + bOc = \(180^o\) ( 2 góc kề bù )
⇒ dOb = \(180^o\) - bOc = \(180^o-100^o=80^o\)
Lại có : bOd > bOa ( \(80^o>40^o\))
⇒ Oa nằm giữa Ob và Od
⇒ dOa + aOb = dOb
⇒ dOa = dOb - aOb = \(80^o-40^o=40^o\)
mà aOb = \(40^o\)(gt)
⇒ Tia Oa là tia phân giác của bOd
Giải:
a) Vì +)Ob;Oc cùng ∈ 1 nửa mặt phẳng bờ chứa tia Oa
+)\(a\widehat{O}b< a\widehat{O}c\) (40o<140o)
⇒Ob nằm giữa Oa và Oc
⇒\(a\widehat{O}b+b\widehat{O}c=a\widehat{O}c\)
\(40^o+b\widehat{O}c=140^o\)
\(b\widehat{O}c=140^o-40^o\)
\(b\widehat{O}c=100^o\)
b) Vì Od là tia đối của Oc
⇒\(c\widehat{O}d=180^o\)
⇒\(d\widehat{O}b+b\widehat{O}c=180^o\)
\(d\widehat{O}b+100^o=180^o\)
\(d\widehat{O}b=180^o-100^o\)
\(d\widehat{O}b=80^o\)
⇒\(b\widehat{O}a+a\widehat{O}d=b\widehat{O}d\)
\(40^o+a\widehat{O}d=80^o\)
\(a\widehat{O}b=80^o-40^o\)
\(a\widehat{O}b=40^o\)
Vì +) \(b\widehat{O}a+a\widehat{O}d=b\widehat{O}d\)
+) \(b\widehat{O}a=a\widehat{O}d=40^o\)
⇒Oa là tia p/g của \(b\widehat{O}d\)
Chúc bạn học tốt!
a) Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\widehat{AOB}< \widehat{AOC}\left(40^0< 80^0\right)\)
nên tia OB nằm giữa hai tia OA và OC
b) Ta có: tia OB nằm giữa hai tia OA và OC(cmt)
nên \(\widehat{AOB}+\widehat{BOC}=\widehat{AOC}\)
\(\Leftrightarrow\widehat{BOC}+40^0=80^0\)
\(\Leftrightarrow\widehat{BOC}=40^0\)
mà \(\widehat{AOB}=40^0\left(gt\right)\)
nên \(\widehat{AOB}=\widehat{BOC}\)
Ta có: tia OB nằm giữa hai tia OA và OC(cmt)
mà \(\widehat{AOB}=\widehat{BOC}\)(cmt)
nên OB là tia phân giác của \(\widehat{AOC}\)(đpcm)
a) Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\widehat{AOB}< \widehat{AOC}\left(30^0< 60^0\right)\)
nên tia OB nằm giữa hai tia OA và OC
b) Ta có: tia OB nằm giữa hai tia OA và OC(cmt)
nên \(\widehat{AOB}+\widehat{BOC}=\widehat{AOC}\)
\(\Leftrightarrow\widehat{BOC}=\widehat{AOC}-\widehat{AOB}\)
\(\Leftrightarrow\widehat{BOC}=60^0-30^0\)
hay \(\widehat{BOC}=30^0\)
Vậy: \(\widehat{BOC}=30^0\)
c) Ta có: tia OB nằm giữa hai tia OA,OC(cmt)
mà \(\widehat{AOB}=\widehat{BOC}\left(30^0=30^0\right)\)
nên tia OB là tia phân giác của \(\widehat{AOC}\)(đpcm)
ê bạn biết câu này ko ? Một mảnh đất hình chữ nhật có chiều dài là 36 m , chiều rộng bằng 2 / 3 chiều dài .Tính diện tích của thửa ruộng đó ?
Ta có O C ⊥ O A ⇒ A O C ^ = 90 ° . O D ⊥ O B ⇒ B O D ^ = 90 ° .
Tia OB nằm giữa hai tia OA, OC.
Do đó A O B ^ + B O C ^ = 90 ° . (1)
Tương tự, ta có A O B ^ + A O D ^ = 90 ° . (2)
Từ (1) và (2) ⇒ B O C ^ = A O D ^ (cùng phụ với A O B ^ ).
Tia OM là tia phân giác của góc AOD ⇒ O 1 ^ = O 2 ^ = A O D ^ 2 .
Tia ON là tia phân giác của góc BOC ⇒ O 3 ^ = O 4 ^ = B O C ^ 2 .
Vì A O D ^ = B O C ^ nên O 1 ^ = O 2 ^ = O 3 ^ = O 4 ^ .
Ta có A O B ^ + B O C ^ = 90 ° ⇒ A O B ^ + O 3 ^ + O 4 ^ = 90 ° ⇒ A O B ^ + O 3 ^ + O 2 ^ = 90 ° .
Do đó M O N ^ = 90 ° ⇒ O M ⊥ O N
+) Do Om là tia đối của tia OB
=> B, O , M thẳng hàng
=> góc BOM =180 độ
+) ta có góc BOM = góc BOA + AOM
=> góc AOM = góc BOM - góc BOA
=> góc AOM =180 độ -50 độ =130 độ ( 1)
+ ) t có góc BOM = góc BOC + COM
=> góc COM= góc BOM - góc BOC
=> góc COM =70 độ ( 2)
từ 1 zà 2 => góc OAM > góc COM
Mik vẽ hình chưa chuẩn lắm nên bạn tự vẽ lại nha
Vì góc OAM và góc AOB là hai góc kề bù nên góc OAM+AOB=180 độ
=>OAM=180-50=130 độ
Vì góc AOB+BOC=AOC
<=> 50 +COB=110
<=> COB=110-50
<=>COB=60 độ
Mà góc COB và góc COM là hai góc kề bù nên
COB+COM=180 độ
=>COM=180-60=120 độ
Vì 130 độ>120 độ nên góc OAM>góc COM
Vậy OAM>COM
#Chúc_bạn_học_tốt
O A B C M
chịu mi hok lớp 4 sorrrry