K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

\(a.P=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{2-\sqrt{a}}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{2-\sqrt{a}}=\sqrt{a}+2+\sqrt{a}+2=2\sqrt{a}+4\) \(b.P=a+1\)

\(2\sqrt{a}+4=a+1\)

\(a-2\sqrt{a}-3=0\)

\(a+\sqrt{a}-3\sqrt{a}-3=0\)

\(\sqrt{a}\left(\sqrt{a}+1\right)-3\left(\sqrt{a}+1\right)=0\)

\(a=9\left(TM\right)\)

KL.............

a: \(A=\dfrac{x\sqrt{2}}{x\sqrt{2}\left(\sqrt{x}+\sqrt{2}\right)}+\dfrac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{x-2}\)

\(=\dfrac{1}{\sqrt{x}+\sqrt{2}}+\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{2}}=\dfrac{\sqrt{x}+1}{\sqrt{x}+\sqrt{2}}\)

b: \(M=\left(\dfrac{\sqrt{a}+a}{\sqrt{a}-2}\right)\cdot\dfrac{\left(\sqrt{a}-2\right)^2}{\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\cdot\left(\sqrt{a}-2\right)=\sqrt{a}\left(\sqrt{a}-2\right)\)

29 tháng 7 2023

\(A=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\)

\(=\dfrac{\sqrt{x}.\sqrt{2x}}{\sqrt{2x}\left(\sqrt{x}+\sqrt{2}\right)}+\dfrac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{2}}+\dfrac{\sqrt{2}}{\sqrt{x}+\sqrt{2}}=1\)

\(M=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{\sqrt{a}+a}{\sqrt{a}-2}.\dfrac{\left(\sqrt{a}-2\right)^2}{\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}-2}.\dfrac{\left(\sqrt{a}-2\right)^2}{\sqrt{a}+1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

22 tháng 12 2023

\(\dfrac{\sqrt{a}-2}{a+2\sqrt{a}}+\dfrac{8}{a-4}\)

\(=\dfrac{\sqrt{a}-2}{\sqrt{a}\left(\sqrt{a}+2\right)}+\dfrac{8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{\left(\sqrt{a}-2\right)^2+8\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)\cdot\sqrt{a}}\)

\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)\cdot\sqrt{a}}=\dfrac{\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}-2\right)}\)

\(=\dfrac{\sqrt{a}+2}{a-2\sqrt{a}}\)

a: 

Sửa đề: a+2căn a+8

\(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}-a-2\sqrt{a}-8}{\left(a-4\right)}\)

\(=\dfrac{7a-\sqrt{a}-14}{\left(a-4\right)}\)

b: A>0

=>(7a-căn a-14)/(a-4)>0

=>a>4 hoặc 0<a<(1+căn 393)/14

5 tháng 7 2023

(a) \(\sqrt{\dfrac{a^2}{25+10b+b^2}}=\sqrt{\dfrac{a^2}{\left(5+b\right)^2}}=\dfrac{\sqrt{a^2}}{\sqrt{\left(5+b\right)^2}}\)

\(=\dfrac{\left|a\right|}{\left|5+b\right|}=\dfrac{-a}{b+5}\) (do \(a< 0,b>0\Rightarrow b+5>0\))

 

(b) \(\left(a-b\right)\sqrt{\dfrac{a^2b^2}{\left(a-b\right)^2}}=\left(a-b\right)\sqrt{\dfrac{\left(ab\right)^2}{\left(a-b\right)^2}}=\left(a-b\right)\cdot\dfrac{\sqrt{\left(ab\right)^2}}{\sqrt{\left(a-b\right)^2}}\)

\(=\left(a-b\right)\cdot\dfrac{\left|ab\right|}{\left|a-b\right|}\).

 

(c) \(\dfrac{x+4\sqrt{x}+4}{2+\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}=\sqrt{x}+2.\)

 

19 tháng 8 2018

ta có : \(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\)

\(=\left(\dfrac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\)

\(=\dfrac{-4\sqrt{a}}{a-4}\dfrac{a-4}{\sqrt{a}}=-4\)

19 tháng 8 2018

-4

20 tháng 2 2022

\(\Leftrightarrow\left(\dfrac{\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}+\sqrt{a}\right).\dfrac{\sqrt{a}-2}{\sqrt{a}-1}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{a}-2}+\sqrt{a}.\dfrac{\sqrt{a}-2}{\sqrt{a}-1}\)

\(\Leftrightarrow\dfrac{1+\sqrt{a}\sqrt{a}-2}{\sqrt{a}-2}.\dfrac{\sqrt{a}-2}{\sqrt{a}-1}\)

\(\Leftrightarrow\dfrac{1+a-2a}{\sqrt{a}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}\Leftrightarrow\sqrt{a}-1\)

10 tháng 8 2018

1. \(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right).\left(\sqrt{a}.\dfrac{4}{\sqrt{a}}\right)=\dfrac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}.4=\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}.4=\dfrac{-64\sqrt{a}}{a-4}\)Nếu nhân tu thứ 2 của phép tính là \(\sqrt{a}-\dfrac{4}{\sqrt{a}}\) thì kết quả của phép tính là -16 nha bạn

10 tháng 8 2018

2.\(\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right).\left(1-\dfrac{1}{\sqrt{a}}\right)=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\dfrac{-\left(1-\sqrt{a}\right)}{\sqrt{a}}=\dfrac{-2\sqrt{a}}{\left(1+\sqrt{a}\right)\sqrt{a}}=\dfrac{-2}{1+\sqrt{a}}\)\(\left(a>0,a\ne1\right)\)

7 tháng 5 2022

mik cần gấp ạ^^

 

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

30 tháng 8 2017

a)

\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)

b)

\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)

c)

\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

d)

\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)