\(a,b\ge0;c>\frac{3}{2};a+b+c=3\)
chứng minh 3(ab+bc+ca)-2abc<7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(a-\sqrt{a}+\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\forall a\ge0\Rightarrow a+\frac{1}{4}\ge\sqrt{a}\)
\(b-\sqrt{b}+\frac{1}{4}=\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\forall b\ge0\Rightarrow b+\frac{1}{4}\ge\sqrt{b}\)
\(\Rightarrow a+\frac{1}{4}+b+\frac{1}{4}\ge\sqrt{a}+\sqrt{b}\)
\(\Rightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)(đpcm)
\(\dfrac{\sqrt{ab}-b}{b}-\sqrt{\dfrac{a}{b}}\le0vớia\ge0;b\ge0\)
$\frac{\sqrt{ab}-b}{b}-\sqrt{\frac{a}{b}}\le 0vớia\ge 0;b\ge 0$
Áp dụng bất đẳng thức AM - GM: \(1+a^3+b^3\ge3\sqrt[3]{1.a^3.b^3}=3ab\).
Vì \(a\ge0\),\(b\ge0\),\(c\ge0\),áp dụng bđt Cauchy cho 3 số dương a,b,c ta có
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ac}\)
Nhân từng vế bđt trên =>đpcm
\(\text{có:}\frac{k}{n}+\frac{n}{k}\ge2\Leftrightarrow\frac{k}{n}-2+\frac{n}{k}\ge0\Leftrightarrow\frac{k}{n}-2\sqrt{\frac{k}{n}}.\sqrt{\frac{n}{k}}+\frac{n}{k}\ge0\Leftrightarrow\left(\sqrt{\frac{k}{n}}-\sqrt{\frac{n}{k}}\right)^2\ge0\forall k,n>0\)
\(\left(a+b\right).\left(b+c\right).\left(c+a\right)\ge8abc\)
\(\Leftrightarrow\left(ab+ac+b^2+bc\right).\left(a+c\right)\ge8abc\)
\(\Leftrightarrow a^2b+a^2c+ab^2+abc+abc+ac^2+b^2c+bc^2\ge8abc\)
\(\Leftrightarrow2+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\ge8\)
\(\Leftrightarrow2+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge8\)(luôn đúng với mọi a,b,c >=0)
đk : \(a\ge0;b\ge0;a\ne b\)
a) \(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\dfrac{a+2\sqrt{ab}+b+a-2\sqrt{ab}+b}{a-b}\) = \(\dfrac{2\left(a+b\right)}{a-b}\)
b) đk : \(a\ge0;b\ge0;a\ne b\)
\(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)
= \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\dfrac{\sqrt{a}+\sqrt{b}}{1}-\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(a+\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}\)
= \(\dfrac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{a+b}\)
Lời giải:
Áp dụng BĐT Schur bậc 3 ta có:
$abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2c)(3-2a)(3-2b)$
$\Leftrightarrow abc\geq 12(ab+bc+ac)-18(a+b+c)+27-8abc$
$\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27$
$\Leftrightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3$
$\Rightarrow 2abc\geq \frac{8}{3}(ab+bc+ac)-6(*)$
Mặt khác:
$\frac{8}{3}(ab+bc+ac)-6-[3(ab+bc+ac)-7]=1-\frac{ab+bc+ac}{3}$
$=\frac{(a+b+c)^2}{9}-\frac{ab+bc+ac}{3}=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{9}\geq 0$
$\Rightarrow \frac{8}{3}(ab+bc+ac)-6\geq 3(ab+bc+ac)-7(**)$
Từ $(*); (**)\Rightarrow 2abc\geq 3(ab+bc+ac)-7$
$\Rightarrow 3(ab+bc+ac)-2abc\leq 7$
Dấu "=" xảy ra khi $a=b=c=1$ (vô lý vì $c>\frac{3}{2}$)
Do đó dấu "=" không xảy ra nên $3(ab+bc+ac)-2abc< 7$ (đpcm)